
System Overview

Your system comprises **61 Jinko Tiger Neo 435W N-Type All Black Mono solar panels** to collect sunlight and turn it into DC electricity.

The panels will be connected to **1 SolarEdge 16,000W 3ph inverter**, which converts the DC electricity into mains (AC) electricity.

We include all the isolators, wiring and meters needed to connect the system safely to your electrical system. Your system will be installed and certified by our trained installation team.

Satellite Image

Solar Panels: Jinko Tiger Neo 435W N-Type All Black Mono x 61

No description

Model

Power 435 watts

Dimensions 1134 x 1762mm

Inverter: SolarEdge 16,000W 3ph

No description

AC Power 16000 watts

Trackers 3

Mounting: GSE roof-integrated mounting system

A roof integrated mounting system from French manufacturer GSE Integration works with a range of panels, and is ideal for both new build and retrofit ...

Designed for Concrete Tile roofs

Colour Not specified

System Performance

We have made an estimate of the annual energy generation of your system. This takes into account the following factors that affect the output of a solar array.

The location of the system

Sunlight is weaker near the poles than near the equator. We use data from a meteorological model of the intensity of sunlight over the course of the year in different locations all over the world.

The orientation of the system

Solar panels that face south receive a little more sunlight than panels that face east or west. However, in diffuse light the orientation of the panels makes little difference, so the effect is less marked than many people imagine.

The degree of shading

If you have trees, neighbouring buildings or nearby high ground that will shade your PV array, the output of the system will be reduced. We have used a 'sunpath diagram' that estimates how often sunlight will be blocked from reaching the panels.

Roof diagrams

Orientation: 53° Pitch: 30°

Orientation: -127° Pitch: 30°

Sunpath diagrams

Shade factor: 1.00

Kk: 1028

Shade factor: 1.00

Kk: 747

Shade factor: 1.00

Kk: 747

We expect your system to generate
22,267 kWh per year

Installation data

Installation capacity of PV system - kWp (stc) 27 kWp
Orientation of the PV system - degrees from South See roof diagrams
Inclination of system (pitch) - degrees from horizontal See roof diagrams
Postcode region Zone 2

Performance Calculations

kWh/kWp (Kk) See sunpath diagrams
Shade Factor (SF) See sunpath diagrams

Estimated output (kWp x Kk x SF) 22267 kWh

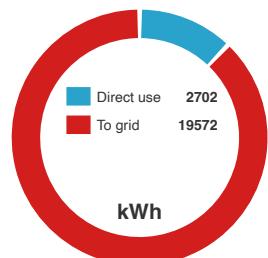
Estimated PV self-consumption

Assumed annual electricity consumption 6291 kWh
Expected solar generation consumed in property 2702 kWh

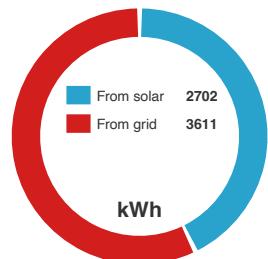
Important note: The performance of solar PV systems is impossible to predict with certainty due to the variability in the amount of sunlight from location to location and from year to year. This estimate is based upon a model that takes account of meteorological data at your location and makes an allowance for losses due to shading of the panels. This is a complex calculation however, and no model can be 100% accurate. It should not be considered a guarantee of performance. If shading is present on your system that will reduce its output to the factor stated. This factor was calculated using industry standard shading methodology and we believe that this will yield results within 10% of the actual energy estimate stated for most systems.

Your energy explained

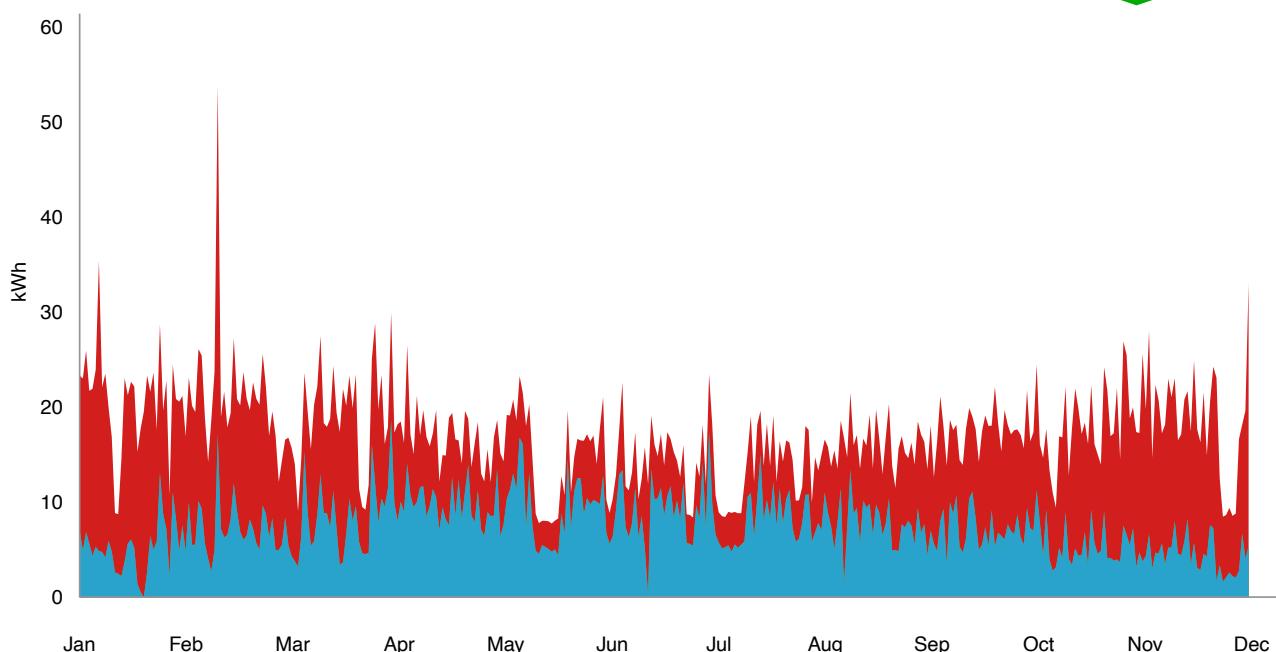
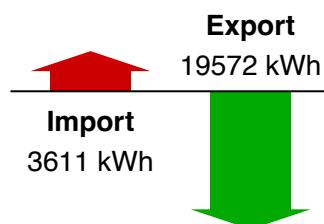
In addition to the MCS calculation of system output we have run a more detailed model of your system to estimate how much of the electricity generated by the system you are likely to use yourself and how much will go to the grid.


Smart Export Guarantee (SEG) information

The Smart Export Guarantee(SEG) enables Generators to receive payments from electricity suppliers for the electricity they export back to the National Grid, providing specific criteria are met. Your installation will be MCS accredited, which means that you should be able to apply for SEG payments from your electricity supplier. Further details on the SEG and its eligibility requirements, including how to apply, can be found online at ofgem.gov.uk


Where your electricity will come from in a typical year

Based on an electricity usage of 6,291 kWh per year, the graph below shows how much electricity used in the property is expected to come directly from the solar panels (blue) and how much is expected to be imported from the grid (red).



Annual Generation

Annual Consumption

Annual Import/Export

Environmental Benefits

Your new PV system will supply your property with clean, green electricity - and in sunny periods some will also be exported back to the grid.

Overall you'll be making a big contribution to reducing CO₂ not just by lowering the carbon intensity of your own electricity, but by putting low-carbon electricity back in the grid for others to use too.

Your current electricity supply produces

1,336 kg CO₂
each year

67% will be supplied by solar, saving

898 kg CO₂
each year

18,039 kWh will be exported, saving

3,830 kg CO₂
each year

Total savings

4,728 kg CO₂
each year

Your yearly CO₂ reduction of 4,728 kg is equal to...

a car ride of 16,886 miles

absorbed by 217 trees

Disclaimer: We calculate and compare the likely annual CO₂ emissions for your home based on your generation and usage with the solar PV system detailed in this document versus estimates for a property like yours using energy from the grid. Your actual CO₂ emissions will depend on lots of factors, like how much energy your solar panels generate, how much of this energy you use directly and how much energy you continue to use from the grid. To calculate what these savings equate to in miles driven, we base this on the CO₂ emissions of an average sized diesel car as outlined in the UK government's 'Greenhouse gas reporting: conversion factors 2022' (<https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022>). To calculate what these savings equate to as the average amount of CO₂ absorbed by trees, we base this on a rate of 25kg per tree per year. Trees absorb anywhere between 10 and 40kg of CO₂ per year on average, depending on a whole host of factors including the species, location, planting density, and age.