



---

Project Name : Land Adjacent to 21 Greencourt Drive, Bersted

Job No : 24-277

Note Title : Drainage Strategy Technical Note

Author : CR

Checked : GG

Approved : GG

Date : August 2025

## 1.0 INTRODUCTION

### 1.1 *Background*

1.1.1 Odyssey has been commissioned by UK Signature Homes to undertake a surface water and foul drainage strategy, to support a planning application for a proposed development at Land Adjacent to 21 Greencourt Drive, Bersted.

1.1.2 The proposal comprises a residential development of two dwellings, including the creation of new vehicular access, landscape planting, surface water attenuation and associated infrastructure. The Arun District Council (ADC) planning application number is BE/70/24/PL.

1.1.3 This technical note sets out details of the proposed drainage strategy in response to the ADC Drainage Engineer comments. The ADC comments are presented in **Appendix A**.

## 2.0 EXISTING SITE CONDITIONS

### 2.1 *Location*

2.1.1 The 0.08 hectare (ha) site is located approximately 1.5 kilometres (km) to the north-west of Bognor Regis railway station. The site is bounded by the rear accesses to gardens of dwellings along Nor'Bren Avenue in the north, the gardens of adjacent properties to the east and west, and Greencourt Drive to the south.



## 2.2 **Topography**

2.2.1 Based on available Light Detection and Ranging (LiDAR) data, level on site range from 7.8 metres Above Ordnance Datum (m AOD) to 8.2m AOD.

## 2.3 **Geology and Hydrology**

2.3.1 British Geological Survey (BGS) online mapping (accessed March 2025) indicates the bedrock geology of the site comprises Lambeth Group (clay, silt and sand). The mapping shows there are superficial River Terrace deposits (sand, silt and clay) present on the site. BGS mapping is presented in **Appendix B**.

2.3.2 Environment Agency (EA) online mapping indicates the nearest Main River is the Aldingbourne Rife, located approximately 1.5km to the north of the site.

2.3.3 BGS hydrogeology mapping (accessed March 2025) shows the site lies within the Lambeth Group, described as “*low productivity aquifer*” and summarised as a “*variable sequence of clays, shell beds, fine sands, silts and pebble beds giving low yields. Sometimes in hydraulic continuity with underlying Chalk aquifer*”.

2.3.4 Groundwater mapping published by the EA indicates the site is not located within a Source Protection Zone.

2.3.5 Groundwater monitoring was undertaken on site between November 2024 and March 2025. The depth of groundwater encountered ranged between 1.40m below ground level (bgl) and 2.50m bgl. The groundwater records and locations are provided in **Appendix C** and **Drawing 24-277-003A**.

2.3.6 Percolation testing was carried out on site to determine an indicative soakage rate. The Vp rates calculated ranged from 49 seconds to 58 seconds. The percolation testing calculations are presented in **Appendix C**.

## 2.4 **Existing Drainage**

2.4.1 Southern Water sewer records indicate the presence of a foul water sewer crossing the site. The sewer records are presented in **Appendix D**. A survey would be required to identify any existing private drainage infrastructure on site. There are no existing public surface water sewers within the site boundary, and the nearest is located approximately 100m to the south-east at the junction of Greencourt Drive, South Way, and Collyer Avenue.



2.4.2 As the developable area for this site is less than 50ha, the Institute of Hydrology (IoH) Report 124 Flood Estimation for Smaller Catchments (1994) method is suitable (50ha is used in the formula and the flow rate is linearly interpolated based on the ratio of the development area). This methodology is approved in the Construction Industry Research and Information Association (CIRIA) C753 The SuDS Manual; the parameters used are presented in **Table 2.1**.

**Table 2.1: SuDS Parameters**

| Parameter  | Value | Unit             |
|------------|-------|------------------|
| SAAR       | 718   | Millimetres (mm) |
| Soil Index | 0.400 | -                |
| Region     | 7     | -                |
| Urban      | 0.000 | -                |

2.4.3 **Table 2.2** summarises the greenfield discharge rates for the total proposed (positively drained) impermeable area of the site (0.051). Supporting calculations are included in **Appendix E**.

**Table 2.2: Greenfield Surface Water Discharge Rates**

| Return Period | Existing Greenfield Discharge Rates from Site (litres per second (l/s)) | Existing Greenfield Discharge Rates per Hectare (l/s/ha) |
|---------------|-------------------------------------------------------------------------|----------------------------------------------------------|
| QBAR          | 0.2                                                                     | 3.5                                                      |
| Q1            | 0.2                                                                     | 3.0                                                      |
| Q30           | 0.4                                                                     | 7.9                                                      |
| Q100          | 0.6                                                                     | 11.2                                                     |

### 3.0 PROPOSED DEVELOPMENT

3.1.1 The development proposals comprise the construction of two dwellings to the rear of 21 Greencourt Drive with associated infrastructure and works including highway access.

3.1.2 The proposed site layout is presented in **Appendix F**.



## 4.0 SURFACE WATER DRAINAGE STRATEGY

### 4.1 *Surface Water Drainage Strategy Requirements*

4.1.1 Any surface water drainage strategy must demonstrate that the proposed development would be drained in a sustainable manner, commensurate with local and national policy. The National Planning Policy Framework (NPPF) requires that flood risk is not increased elsewhere as a result of new development.

### 4.2 *Proposed Surface Water Drainage Strategy*

4.2.1 The proposed surface water drainage strategy is shown in **Drawing 24-277-004A**.

4.2.2 The ADC drainage hierarchy states that the most-preferred method of surface water discharge is “*discharge into the ground (infiltration)*”. The groundwater monitoring results indicate the highest level encountered was 1.40m bgl, and a 1m unsaturated zone would be required between the base of an infiltration device and the peak groundwater level. The attenuation storage would therefore need to be kept at a maximum depth of 0.40m in order to achieve the 1m unsaturated zone, and the area required to achieve sufficient storage at this shallow depth would not be feasible within the site layout.

4.2.3 Furthermore, a 5m infiltration buffer between an infiltration device and any building. There would be insufficient space to achieve the necessary attenuation on site once a 5m buffer has been applied to both the existing dwellings located to the east and the west of the site, as well as the proposed dwellings. As such, infiltration is deemed to be an unviable option for surface water disposal.

4.2.4 The next most-preferred method of surface water discharge is “*controlled discharge to a surface water body*”. There are no water bodies within the vicinity of the site, and therefore this option is not viable.

4.2.5 The next most-preferred method of surface water discharge is “*controlled discharge to a surface water sewer*”. It is proposed to connect flows to the Southern Water surface water sewer located to the south-east of the site.

4.2.6 It is proposed that surface water from roads and clean roofs would be conveyed to permeable paving within the shared surfacing serving the two dwellings. Flows would connect to the public sewer at a controlled rate. Owing to the small scale of the development, it is proposed to



discharge flows at 0.5l/s. The risk of blockage associated with a low restricted rate is managed by the inclusion of silt traps and porous paving.

4.2.7 A smart water butt system will be incorporated to each property to provide additional interception drainage and water re-use.

4.2.8 The permeable paving has been designed to accommodate a 1 in 100-year storm plus 45% to account for climate change in line with the latest guidelines. The calculations have been undertaken in Causeway Flow and incorporate FEH 2022 rainfall data. Cv values have been set to 1.0 as per ADC requirements, 10% urban creep has been allowed for (see Drawing **24-277-005**), and a surcharged outfall has been modelled. The Causeway Flow calculations are presented in **Appendix E**.

#### 4.3 **Water Quality**

4.3.1 The 'pollution hazard indices for different land use classifications' table has been extracted from CIRIA C753 The SuDS Manual, and applied to the development proposals, as shown in **Table 4.1**. The site is classed as having a low pollution hazard level.

**Table 4.1: Pollution Hazard Indices**

| Land Use                                                                                                                                                                                                                                  | Pollution Hazard Level | Total Suspended Solids (TSS) | Metals | Hydro-carbons |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|--------|---------------|
| Residential Roofs                                                                                                                                                                                                                         | Very low               | 0.2                          | 0.2    | 0.05          |
| Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non-residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements /day | Low                    | 0.5                          | 0.4    | 0.4           |

4.3.2 The proposed permeable paving would provide treatment for the surface water runoff from the site. Pipe inlets to the permeable paving will be fitted with a silt trap. The SuDS mitigation indices have been calculated in **Table 4.2** in accordance with the guidance contained in The SuDS Manual.

**Table 4.2: SuDS Mitigation Indices**

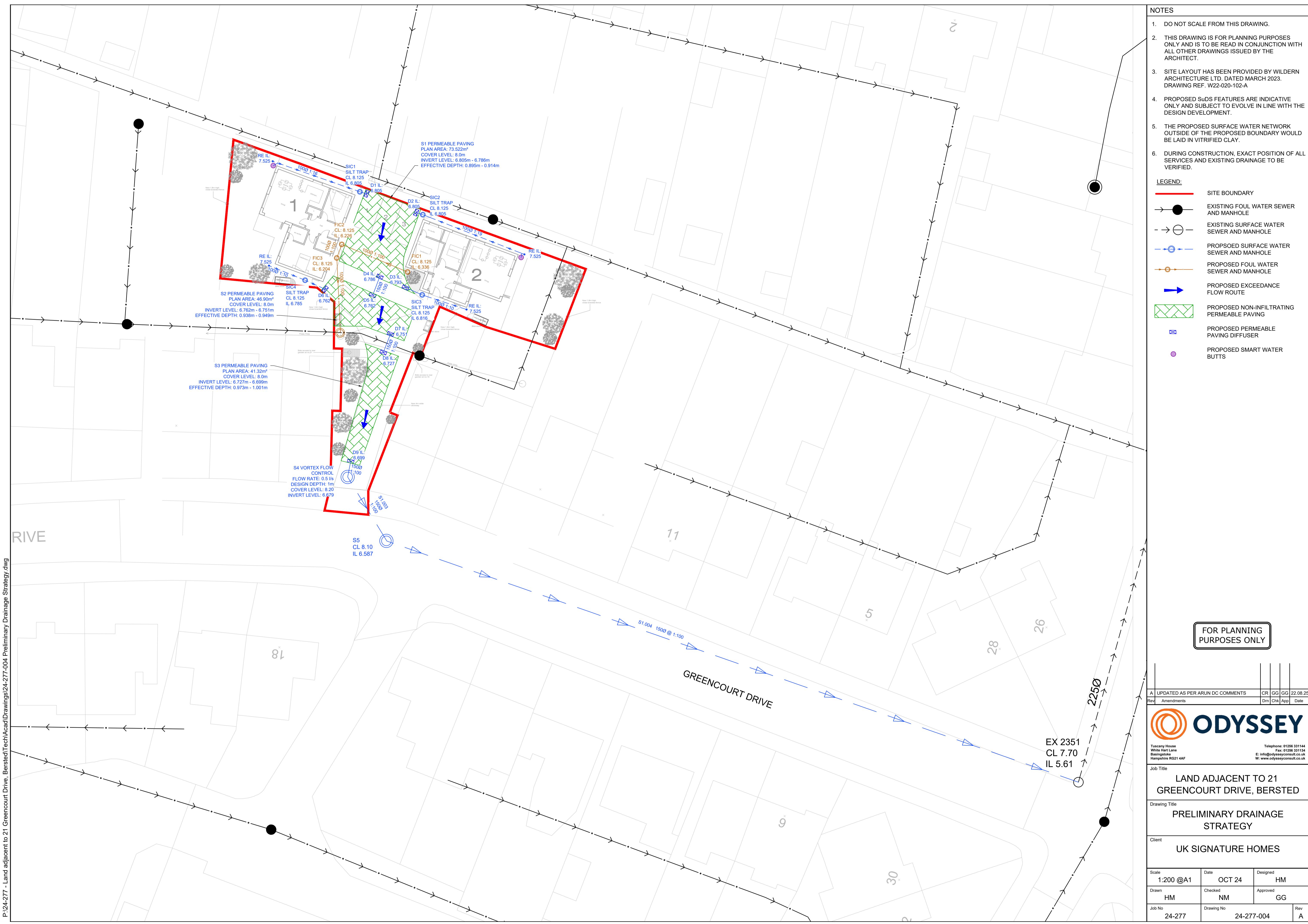
| Type of SuDS Component | Mitigation Indices |        |              |
|------------------------|--------------------|--------|--------------|
|                        | TSS                | Metals | Hydrocarbons |
| Permeable Pavement     | 0.7                | 0.6    | 0.7          |

4.3.3 The total mitigation indices from **Tables 4.2** exceed the corresponding pollution hazard indices for the site from **Table 4.1**, therefore the pollution hazard from the site would be sufficiently mitigated.

## 5.0 FOUL DRAINAGE STRATEGY

### 5.1 *Proposed Foul Water Drainage Strategy*

5.1.1 Proposed foul flows would discharge to the existing Southern Water public foul sewer which crosses the site.


## 6.0 SUMMARY AND CONCLUSIONS

6.1.1 Odyssey has been commissioned by UK Signature Homes to undertake a surface water and foul drainage strategy in response to consultation comments from ADC, in support of a planning application for a proposed development at Land adjacent to 21 Greencourt Drive, Bersted.

6.1.2 It is proposed that surface water generated by the development would be attenuated onsite using lined permeable paving, and discharged at a restricted rate to the nearby Southern Water surface water sewer. It is proposed that foul flows would be discharged to the Southern Water foul sewer which crosses the site.

6.1.3 This Technical Note demonstrates the design principles for the proposed development regarding surface water and foul drainage are commensurate with national and local policy and meet ADC requirements.

## **DRAWINGS**







**APPENDIX A**

**Arun District Council Drainage Consultation Comments**

# Engineers Comments Regarding Surface Water Drainage

|                                 |                                                                                                                                                                                                  |                            |            |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|
| <b>Application Reference:</b>   | BE/44/25/PL                                                                                                                                                                                      | <b>Reviewer Reference:</b> | ADC/PC     |
| <b>Planning Officer:</b>        | Hannah Kersley                                                                                                                                                                                   | <b>Date of Review:</b>     | 31/07/2025 |
| <b>Site Name:</b>               | Land adjacent to 21 Greencourt Drive Bersted PO21 5EU                                                                                                                                            |                            |            |
| <b>Application Description:</b> | 2 No 2 bedroom detached bungalows with associated car parking and bin and bike stores (resubmission following BE/70/24/PL. This application is in CIL Zone 4 and is CIL Liable as new dwellings. |                            |            |
| <b>Assessment Number:</b>       | 1 of 1                                                                                                                                                                                           |                            |            |

## Policy and Guidance Information

Arun District Council Surface Water Drainage Guidance - <https://www.arun.gov.uk/surfacewater>

Land Drainage Consent – <https://www.westsussex.gov.uk/fire-emergencies-and-crime/dealing-with-extreme-weather/flooding/flood-risk-management/ordinary-watercourse-land-drainage-consent/> and <https://www.arun.gov.uk/land-drainage-consent/>

Arun District Council surface water pre-commencement conditions - <https://www.arun.gov.uk/planning-pre-commencement-conditions>

The SuDs Manual [C753] by CIRIA

Sustainable drainage systems: non-statutory technical standards'

<https://assets.publishing.service.gov.uk/media/5a815646ed915d74e6231b43/sustainable-drainage-technical-standards.pdf>

National standards for sustainable drainage systems

[National standards for sustainable drainage systems - GOV.UK](#)

## Response Objection

## Critical Items for Surface Water Drainage Design Conditions

The failure to adequately address the following items will result in an objection to a surface water drainage design.

If any of these items are inadequately addressed by the submission, then their correction may result in a redesign of the surface water drainage scheme. A redesign is likely to have site wide implications such as the potential for storage structures to increase in volume or plan area.

| Critical Item                              | Reason                                                                                                                                                                                   | Status                                                           |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <b>Winter groundwater monitoring data.</b> | Adequate winter groundwater monitoring data must be supplied to evidence that infiltration designs have sufficient freeboard from the base of structures and the peak groundwater level. | <b>Supplied but location plan of monitoring points required.</b> |

|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                | <p>The same data is necessary to ensure that the potential for buoyancy has been adequately considered in attenuation designs.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |
| <b>Winter infiltration testing data.</b>       | <p>Adequate winter infiltration testing must be supplied to justify the proposed discharge method and design infiltration rates.</p> <p>Infiltration tests must be completed strictly in accordance with BRE DG 365, CIRIA R156 or a similar approved method. Testing depths must account for peak groundwater levels and correspond with the location and depth of proposed infiltration features.</p> <p>Designs must be based upon the <u>slowest</u> infiltration rate evidenced closest to a proposed infiltration feature. Average design rates will not be accepted.</p> <p>The results of incomplete tests should not be extrapolated to obtain design values for infiltration rates.</p>                                                                                                                                          | <b>Sufficient – infiltration not deemed feasible due to high groundwater and difficulty to achieve one metre freeboard.</b> |
| <b>The hierarchy for sustainable drainage.</b> | <p>The proposed discharge method must accord with the SuDS hierarchy as given below. Evidence must be supplied to justify the proposed discharge method.</p> <ol style="list-style-type: none"> <li>1. Rainwater reuse where possible.</li> <li>2. Complete discharge into the ground (infiltration).</li> <li>3. Hybrid infiltration and restricted discharge to an appropriate water body or surface water sewer.</li> <li>4. Restricted discharge to an appropriate water body.</li> <li>5. Restricted discharge to a surface water sewer.</li> <li>6. Restricted discharge to a combined sewer.</li> </ol> <p>A water body may be defined as a river, watercourse, ditch, culverted watercourse, reservoir, wetland or the sea.</p> <p><b>Engineers cannot support any proposed connection of surface water to the foul sewer.</b></p> | <b>Supplied – restricted discharge to Public Surface Water Sewer but discharge rate to be reduced.</b>                      |
| <b>Calculations</b>                            | <p>Calculations for pre-development run off rates must be based upon the positively drained area only.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Insufficient</b>                                                                                                         |

|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                   | <p>Proposed discharge rates must not increase flood risk on site or elsewhere. <b>Discharge rates must be restricted to QBAR or 2 l/s/ha, depending on whichever is higher.</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|                                   | <p>Designs must be based on the most recently available rainfall data at the time of conditions being applied. <b>FSR rainfall data will not be accepted.</b> FEH rainfall data is based upon more recent records and continues to be updated.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Sufficient</b>   |
|                                   | <p>Designs must use the correct climate change allowances at the time of determination of the outline or full planning application.</p> <p>CV values for all events must be set to 1. This includes summer, winter, design, and simulation events.</p> <p><b>The correct allowance for urban creep must be applied.</b></p> <p>Additional storage must be set to zero unless it can be evidenced where this is provided.</p> <p>Infiltration half-drain times must be less than 24 hours.</p> <p>Infiltration design rates must be applied to the sides of soakaways, or to the base of infiltration blankets. Design rates must not be applied to both the base and sides of infiltration structures.</p> <p><b>A surcharged outfall must be modelled.</b></p> | <b>Insufficient</b> |
| <b>Natural catchments design.</b> | <p>The submission must define the natural drainage characteristics within, and hydraulically linked to, the site and demonstrate that the drainage proposals will integrate with and not compromise the function of the natural and existing drainage systems.</p> <p>The condition, performance (including capacity where appropriate) and ownership of any existing site surface water drainage infrastructure must be accurately reported.</p> <p>Appropriate easements to watercourses and other services must be shown on all plans.</p>                                                                                                                                                                                                                   | <b>Sufficient</b>   |

|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                | <p>Where there are areas of flood risk from any source on the site, it must be shown how a sustainable surface water drainage design can be accommodated on the site without conflicting with those areas of flood risk.</p> <p>Designs must replicate the natural drainage catchments of the site. All surface water drainage designs must therefore drain via gravity to corresponding points of discharge.</p> <p><b>The use of pumps for surface water drainage is not sustainable and will not be supported.</b></p> |                                                           |
| <b>Plans</b>                   | Plan areas, depths and levels of drainage infrastructure must accurately correspond with the supporting calculations.                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Insufficient</b>                                       |
| <b>Water quality benefits.</b> | An assessment of water quality is necessary to evidence that the proposed design provides adequate treatment of surface water.                                                                                                                                                                                                                                                                                                                                                                                            | <b>Sufficient once silt traps have been incorporated.</b> |
| <b>Trees and planting</b>      | <p>There should be no conflict between surface water drainage infrastructure and existing or proposed trees or planting.</p> <p>The design must consider the potential growth of proposed trees and adequate mitigation must be provided to protect drainage infrastructure where conflict <u>cannot</u> be avoided.</p>                                                                                                                                                                                                  | <b>Sufficient</b>                                         |

#### Additional comments to the planning officer

The NPPF states that when determining any planning application, local planning authorities should ensure that flood risk is not increased elsewhere (paragraph 173 and 180e). The PPG guides local planning authorities to refer to 'Sustainable drainage systems: non-statutory technical standards' and detailed industry guidance like The SuDS Manual [C753] by CIRIA to guide decisions about the design, maintenance, and operation of sustainable drainage systems for non-major development.

This consultation has been primarily informed by The SuDS Manual.

The applicant has now undertaken ground investigations, which has revealed that groundwater levels peak 1.4m below ground level. This effectively rules out infiltration as an option due to the need to provide one metre freeboard between the bases of any infiltration devices and peak groundwater level. On this site it is not practical to achieve such a shallow (ie. 400mm depth) infiltration system.

The proposal is therefore to discharge to the Public surface Water sewer at the junction of Greencourt Drive and South Way, at a restricted rate. Unfortunately, the proposed discharge rate exceeds what we would expect for this development and will need to be reduced. This fact, together

with other comments listed below need to be addressed at this stage, to ensure that we can adequately assess if flood risk will be increased by the proposed development. **Therefore, currently this application does not accord with the NPPF as set out above.**

### **Overcoming our objection**

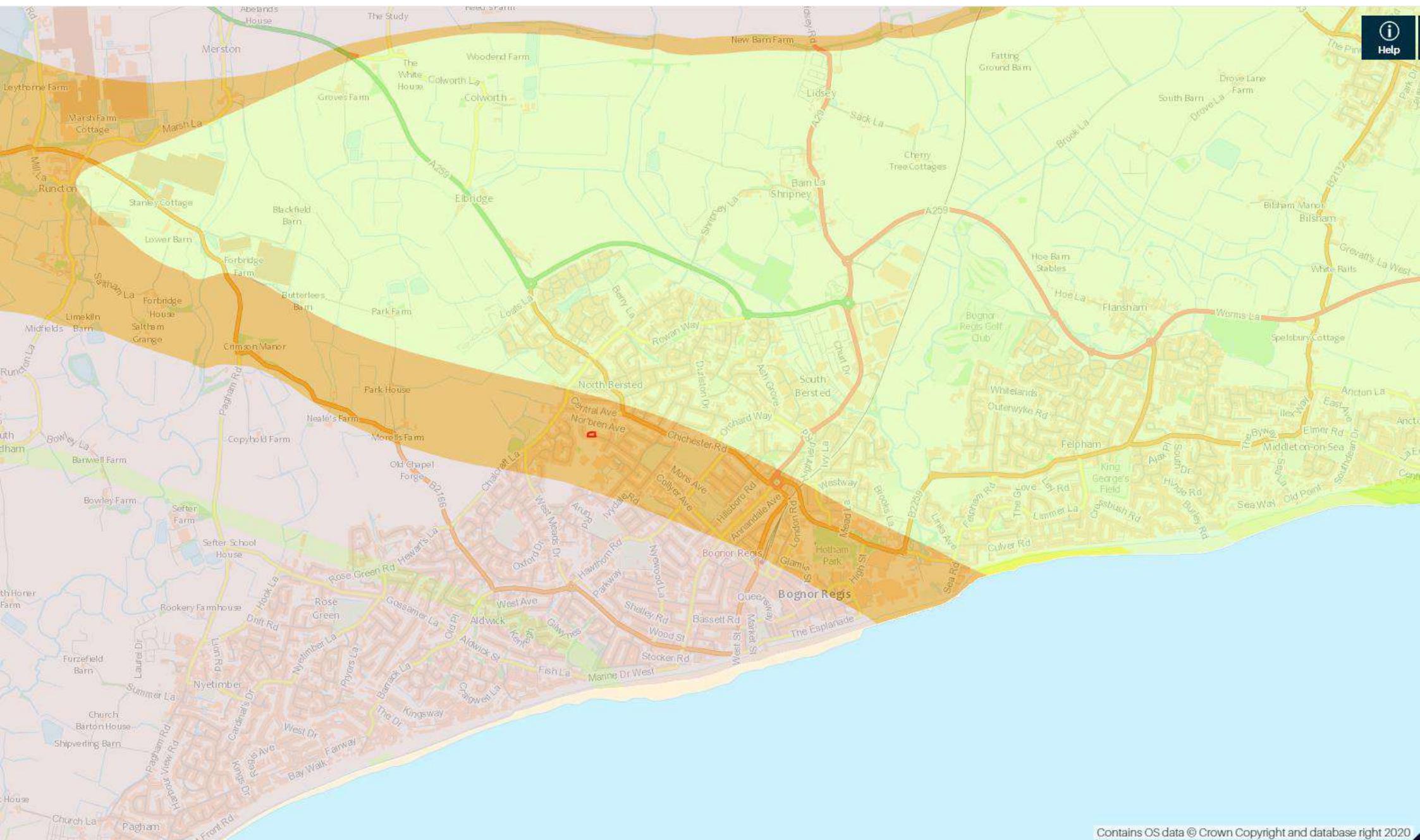
As this is not a holding objection or a request for further information, I am not listing requested conditions. If you are minded to approve this application, please reconsult me for a list of suggested conditions to ensure that the development is adequately drained and does not increase flood risk elsewhere.

**The imposition of conditions at this stage rather than overcoming my objection could result in a circumstance where the condition cannot be discharged. In the event of attaching a condition that cannot be discharged, permission may be invalid.**

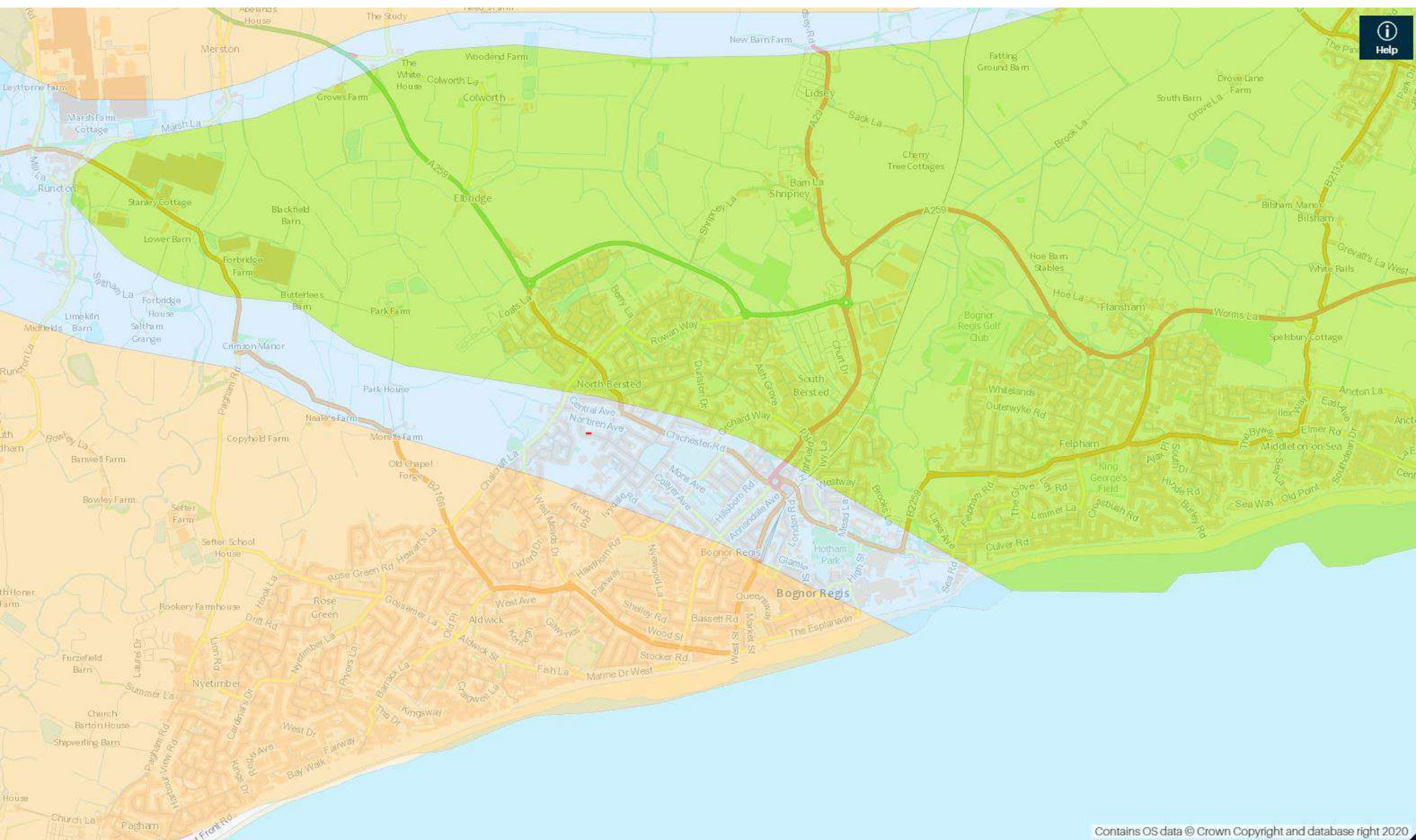
If the planning officer is minded to allow the applicant additional time to submit further documents to support this application, then the following evidence may overcome our objection. Please do not submit further documents without prior discussion with the planning officer as to whether it will be possible for these to be assessed or influence their determination.

The matters listed below need to be resolved/agreed in order for our objection to be reconsidered;

1. The proposed discharge rate is excessive for a development of this scale and exceeds the requirements of the National Standards . In this instance, we are prepared to agree a rate of 0.5 l/s in order to help provide a practical solution. Restricting flows to such rates, will result in a flow control device of a small diameter, which needs protection from blockage. However, provided all flows pass through the permeable paving, as currently proposed, then this will act as a means to reduce the risk of blockage. Additional measures can be incorporated as part of the detailed design at a later stage. A suitable revised scheme therefore needs to be provided, to accommodate the increase in storage required, etc.
2. Evidence of permission in principle from Southern Water is required, in respect to the proposed connection of surface water to the Public Surface Water sewer, at the discharge rate discussed above.
3. The applicant should note that the existing manhole being connected to at the junction of Greencourt Drive and South Way may be at a slightly different location to that shown on the drainage layout plan ie. more into the footpath. Also, it would be advisable to ensure that no third party utility mains/services, including the existing highway drainage in Greencourt Drive, conflict with the routing and levels of the proposed pipework, etc. This matters may result in having to reconfigure the proposed offsite pipework to enable a suitable connection.
4. It is noted that there will be a considerable length of 'offsite' pipework and associated manhole/s. Confirmation is required as to whether these assets are to be adopted by a Water Company. Evidence of agreement in principle from the Water Company will be required. It is unlikely, that West Sussex County Council (WSCC), as Highway Authority will permit an unadopted arrangement in the public highway and therefore it is important to establish its future status. If adoption is not sought, then confirmation will be required from WSCC that the principle of the arrangement is acceptable to them.


5. The hydraulic calculations have not been checked as a result of item 1. However, they will need to be altered to reflect the revised scheme that is now required. Urban creep at 10% must be included, irrespective of the sites perceived constraints. A surcharged outfall must also be modelled. Ensure that the calculations reflect the invert level of the proposed flow control devices. Provide a copy of the FEH point descriptors file, so they parameters can be checked.
6. Provide an impermeable area plan to support the hydraulic calculations.
7. The drainage layout must include the pipework/manhole arrangements around the two dwellings and show the connectivity to the permeable paving. Manhole cover levels, invert levels, pipe diameters and gradients to be included. All diffuser units (including those linking the permeable pavements) to have inverts specified. Indicate diameters/gradients of all link pipes. Silt traps to be incorporated prior to any discharge into permeable paving.
8. Provide a location plan for the water table monitoring boreholes, to confirm that they are located on site.
9. Interception drainage needs to be considered. This could take the form of smart water butts and/or other methods of rainwater harvesting. Indicate on drainage layout.

A surface water design checklist is available on our website at


<https://www.arun.gov.uk/surfacewater/>. **If the design is amended following receipt of our consultation the designer may need to refer to the full checklist to ensure that the revised design meets our requirements.**

This checklist is designed to aid an applicant with their submission. The list is not exhaustive, and our engineers may request additional information to enable them to review a proposal to their satisfaction.

**APPENDIX B**  
**British Geological Survey Mapping**







## **APPENDIX C**

### **Site Investigation Results**

# PERCOLATION TESTS AND CALCULATIONS

For the proposed installation of a new soak away system

## Calculations

Result of 1<sup>st</sup> Percolation Test

(a) Depth of water (mm) 250 (b) Time taken to soak away (secs) 14,400  
Percolation Value ( $V_p$ ) = (b) ÷ (a) 57.6 (secs)

Result of 2<sup>nd</sup> Percolation Test

(a) Depth of water (mm) 250 (b) Time taken to soak away (secs) 12,600  
Percolation Value ( $V_p$ ) = (b) ÷ (a) 50.4 (secs)

Result of 3<sup>rd</sup> Percolation Test

(a) Depth of water (mm) 250 (b) Time taken to soak away (secs) 12,240  
Percolation Value ( $V_p$ ) = (b) ÷ (a) 48.96 (secs)

## Calculations (continued)

Average  $V_p$  Value of test 1, 2 & 3 52.32 (secs) (This is known as the Percolation Value)

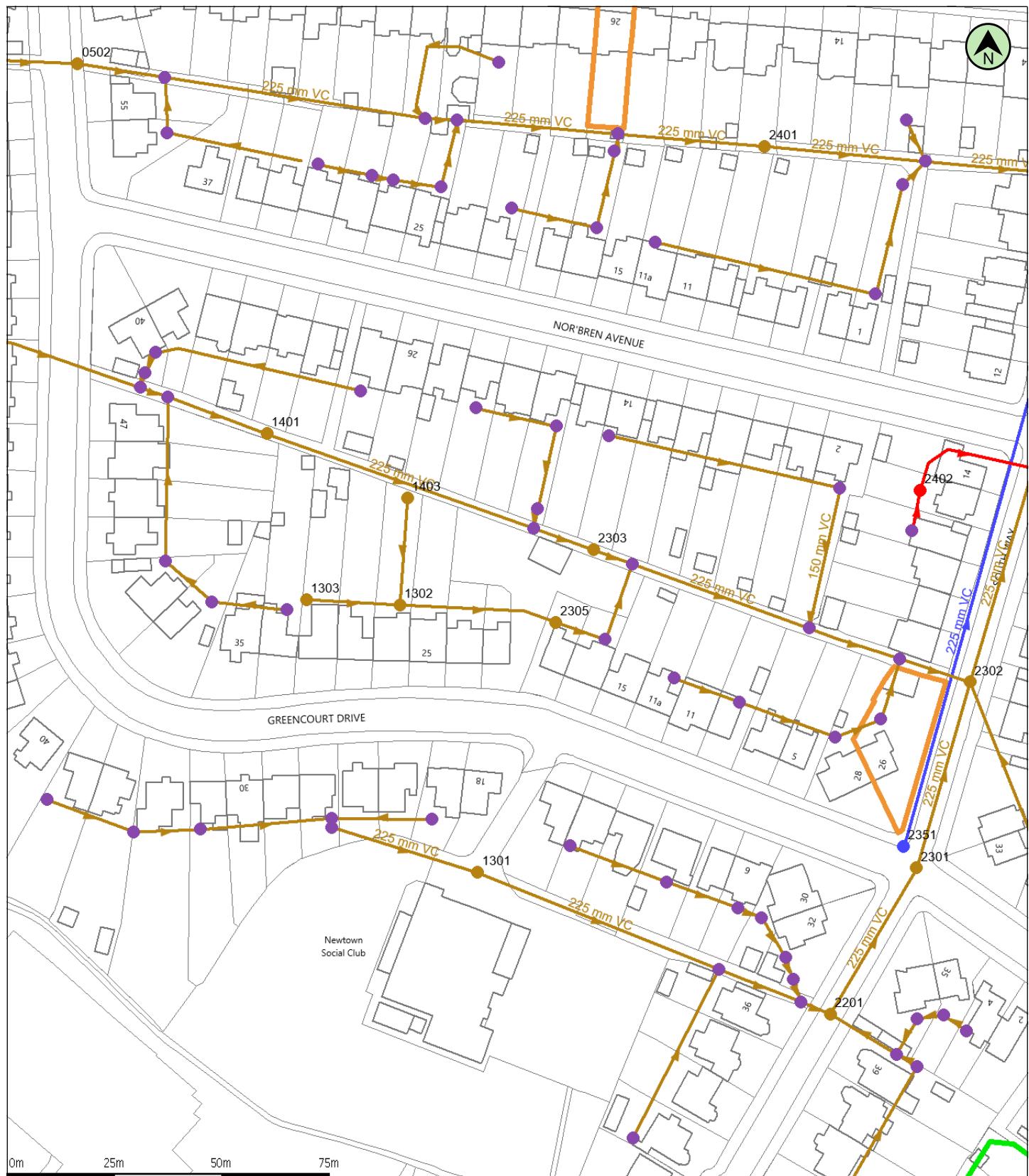
Number of persons (P) to be served by the new system 6

(Allow a realistic figure here, e.g for a 3 bedroom house, 4 to 5 persons)

Area of drainage trench ( $A_t$ ) required =  $P \times V_p \times 0.25$  (or 0.2)

Substituting the values given above:  $A_t = 6 \times 52.32 \times .25$   
= 78.48 square metres

Width (W) of new drainage trench = .6 metres


Length (L) of new drainage trench =  $A_t \div W$   
= 78.48 ÷ .6 metres  
= 130.8 metres

## Notes

Test was carried out on February 28<sup>th</sup>.  
Test hole filled overnight.  
The 27<sup>th</sup> had prolonged heavy rain in the morning.  
The 28<sup>th</sup> was dry and fair.  
Hole size was 1m x .6 x .8 and filled to a depth of 250mm with water.  
First test conducted at 7am.  
Second test conducted at 1230pm.  
Third test conducted at 8am on the next day.

| Depth of Standing Groundwater |            |                              |                            |
|-------------------------------|------------|------------------------------|----------------------------|
| Trial Hole                    | Date       | Depth of Groundwater (m bgl) | Depth of Standpipe (m bgl) |
| WS1                           | 25/11/2024 | 1.40                         | 3.25                       |
|                               | 05/12/2024 | 1.50                         | 3.20                       |
|                               | 07/01/2024 | 1.40                         | 3.30                       |
|                               | 12/02/2025 | 2.50                         | 3.00                       |
|                               | 03/03/2025 | 2.40                         | 3.30                       |
|                               |            |                              |                            |
| WS2                           | 25/11/2024 | 1.87                         | 3.25                       |
|                               | 05/12/2024 | 2.00                         | 3.20                       |
|                               | 07/01/2024 | 1.80                         | 3.20                       |
|                               | 12/02/2025 | 2.50                         | 3.15                       |
|                               | 03/03/2025 | 2.41                         | 3.10                       |
|                               |            |                              |                            |

**APPENDIX D**  
**Southern Water Sewer Records**

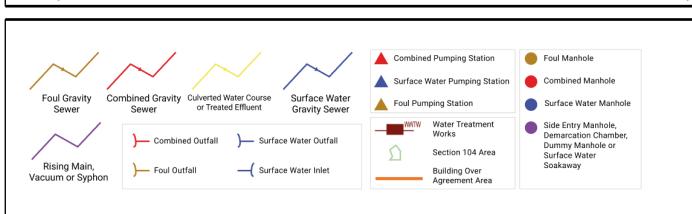


(c) Crown copyright and database rights 2024 Ordnance Survey AC0000808122

(c) Crown copyright and  
Date updated: 24/09/24

Scale: 1:1250

Scale: 1:1250


---

Date: 17/10/24

Date: 17/10/24

Wastewater Plan A4

Powered by digidot



cneedham@odysseyconsult.co.uk

24-277



The positions of pipes shown on this plan are believed to be correct, but Southern Water Services Ltd accept no responsibility in the event of inaccuracy. The actual positions should be determined on site. This plan is produced by Southern Water Services Ltd (c) Crown copyright and database rights 2024 Ordnance Survey AC0000808122. This map is to be used for the purposes of viewing the location of Southern Water plant only. Any other uses of the map data or further copies is not permitted.

WARNING: BAC pipes are constructed of Bonded Asbestos Cement.

WARNING: Unknown (UNK) materials may include Bonded Asbestos Cement.



## **APPENDIX E**

### **Drainage Strategy Supporting Calculations**

|                                                          |                         |
|----------------------------------------------------------|-------------------------|
| Odyssey Markides LLP                                     | Page 1                  |
| Tuscany House<br>White Hart Lane<br>Basingstoke RG21 4AF |                         |
| Date 24/10/2024 09:27                                    | Designed by WindesPC8   |
| File                                                     | Checked by              |
| Micro Drainage                                           | Source Control 2020.1.3 |



ICP SUDS Mean Annual Flood

Input

|                       |       |               |          |
|-----------------------|-------|---------------|----------|
| Return Period (years) | 100   | Soil          | 0.400    |
| Area (ha)             | 1.000 | Urban         | 0.000    |
| SAAR (mm)             | 718   | Region Number | Region 7 |

**Results 1/s**

|            |     |
|------------|-----|
| QBAR Rural | 3.5 |
| QBAR Urban | 3.5 |

Q100 years 11.2

|            |      |
|------------|------|
| Q1 year    | 3.0  |
| Q30 years  | 7.9  |
| Q100 years | 11.2 |

22/08/2025

Nodes

|   | Name                  | Area (ha) | T of E (mins) | Cover Level (m) | Node Type | Manhole Type | Diameter (mm) | Easting (m) | Northing (m) | Depth (m) | Notes              |
|---|-----------------------|-----------|---------------|-----------------|-----------|--------------|---------------|-------------|--------------|-----------|--------------------|
| ✓ | S1 Permeable Paving   | 0.032     | 4.00          | 8.000           | Manhole   | Adoptable    | 1200          | 492194.711  | 100377.703   | 1.214     | Auto-design is off |
| ✓ | S2 Permeable Paving   | 0.014     | 4.00          | 8.000           | Junction  |              |               | 492194.228  | 100372.068   | 1.249     | Auto-design is off |
| ✓ | S3 (Permeable Paving) | 0.010     | 4.00          | 8.000           | Junction  |              |               | 492194.602  | 100366.263   | 1.301     | Auto-design is off |
| ✓ | S4 Flow Control       |           |               | 8.200           | Manhole   | Adoptable    | 1200          | 492194.633  | 100363.408   | 1.521     | Auto-design is off |
| ✓ | S5                    |           |               | 8.100           | Manhole   | Adoptable    | 1200          | 492197.389  | 100361.048   | 1.513     | Auto-design is off |
| ✓ | S6 Outfall            |           |               | 7.700           | Manhole   | Adoptable    | 1200          | 492206.838  | 100361.012   | 2.015     |                    |

Links

| Name  | US Node               | DS Node               | Length (m) | ks (mm) / n | US IL (m) | DS IL (m) | Fall (m) | Slope (1:X) | Dia (mm) | T of C (mins) | Rain (mm/hr) |
|-------|-----------------------|-----------------------|------------|-------------|-----------|-----------|----------|-------------|----------|---------------|--------------|
| 1.000 | S1 Permeable Paving   | S2 Permeable Paving   | 2.425      | 0.600       | 6.786     | 6.762     | 0.024    | 101.0       | 150      | 4.04          | 50.0         |
| 1.001 | S2 Permeable Paving   | S3 (Permeable Paving) | 2.452      | 0.600       | 6.751     | 6.727     | 0.024    | 102.2       | 150      | 4.08          | 50.0         |
| 1.002 | S3 (Permeable Paving) | S4 Flow Control       | 1.966      | 0.600       | 6.699     | 6.679     | 0.020    | 98.3        | 150      | 4.11          | 50.0         |
| 1.003 | S4 Flow Control       | S5                    | 9.201      | 0.600       | 6.679     | 6.587     | 0.092    | 100.0       | 150      | 4.27          | 50.0         |
| 1.004 | S5                    | S6 Outfall            | 90.231     | 0.600       | 6.587     | 5.685     | 0.902    | 100.0       | 150      | 5.76          | 50.0         |

| Name | US Node | DS Node               | Vel (m/s) | Cap (l/s) | Flow (l/s) | US Depth (m) | DS Depth (m) | Minimum Depth (m) | Maximum Depth (m) | Σ Area (ha) | Σ Add Inflow (l/s) | Pro Depth (mm) | Pro Velocity (m/s) |
|------|---------|-----------------------|-----------|-----------|------------|--------------|--------------|-------------------|-------------------|-------------|--------------------|----------------|--------------------|
| ?    | 1.000   | S1 Permeable Paving   | 0.999     | 17.7      | 5.8        | 1.064        | 1.088        | 1.064             | 1.088             | 0.032       | 0.0                | 59             | 0.895              |
| ?    | 1.001   | S2 Permeable Paving   | 0.994     | 17.6      | 8.3        | 1.099        | 1.123        | 1.099             | 1.123             | 0.046       | 0.0                | 72             | 0.979              |
| ?    | 1.002   | S3 (Permeable Paving) | 1.013     | 17.9      | 10.1       | 1.151        | 1.371        | 1.151             | 1.371             | 0.056       | 0.0                | 81             | 1.043              |
| ?    | 1.003   | S4 Flow Control       | 1.005     | 17.8      | 10.1       | 1.371        | 1.363        | 1.363             | 1.371             | 0.056       | 0.0                | 81             | 1.037              |
| ✓    | 1.004   | S5                    | 1.004     | 17.7      | 10.1       | 1.363        | 1.865        | 1.363             | 1.865             | 0.056       | 0.0                | 81             | 1.037              |

Pipeline Schedule

| Link  | Length (m) | Slope (1:X) | Dia (mm) | Link Type | US CL (m) | US IL (m) | US Depth (m) | DS CL (m) | DS IL (m) | DS Depth (m) |
|-------|------------|-------------|----------|-----------|-----------|-----------|--------------|-----------|-----------|--------------|
| 1.000 | 2.425      | 101.0       | 150      | Circular  | 8.000     | 6.786     | 1.064        | 8.000     | 6.762     | 1.088        |
| 1.001 | 2.452      | 102.2       | 150      | Circular  | 8.000     | 6.751     | 1.099        | 8.000     | 6.727     | 1.123        |
| 1.002 | 1.966      | 98.3        | 150      | Circular  | 8.000     | 6.699     | 1.151        | 8.200     | 6.679     | 1.371        |
| 1.003 | 9.201      | 100.0       | 150      | Circular  | 8.200     | 6.679     | 1.371        | 8.100     | 6.587     | 1.363        |
| 1.004 | 90.231     | 100.0       | 150      | Circular  | 8.100     | 6.587     | 1.363        | 7.700     | 5.685     | 1.865        |

| Link  | US Node               | Dia (mm) | Node Type | MH Type   | DS Node               | Dia (mm) | Node Type | MH Type   |
|-------|-----------------------|----------|-----------|-----------|-----------------------|----------|-----------|-----------|
| 1.000 | S1 Permeable Paving   | 1200     | Manhole   | Adoptable | S2 Permeable Paving   |          | Junction  |           |
| 1.001 | S2 Permeable Paving   |          | Junction  |           | S3 (Permeable Paving) |          | Junction  |           |
| 1.002 | S3 (Permeable Paving) |          | Junction  |           | S4 Flow Control       |          | 1200      | Manhole   |
| 1.003 | S4 Flow Control       | 1200     | Manhole   | Adoptable | S5                    | 1200     | Manhole   | Adoptable |
| 1.004 | S5                    | 1200     | Manhole   | Adoptable | S6 Outfall            | 1200     | Manhole   | Adoptable |

Manhole Schedule

| Node                  | Easting (m) | Northing (m) | CL (m) | Depth (m) | Dia (mm) | Node Type | MH Type   | Connections | Link  | IL (m) | Dia (mm) | Link Type |
|-----------------------|-------------|--------------|--------|-----------|----------|-----------|-----------|-------------|-------|--------|----------|-----------|
| S1 Permeable Paving   | 492194.711  | 100377.703   | 8.000  | 1.214     | 1200     | Manhole   | Adoptable |             |       |        |          |           |
| S2 Permeable Paving   | 492194.228  | 100372.068   | 8.000  | 1.249     |          | Junction  |           | 0           | 1.000 | 6.786  | 150      | Circular  |
| S3 (Permeable Paving) | 492194.602  | 100366.263   | 8.000  | 1.301     |          | Junction  |           | 1           | 1.001 | 6.751  | 150      | Circular  |
| S4 Flow Control       | 492194.633  | 100363.408   | 8.200  | 1.521     | 1200     | Manhole   | Adoptable | 1           | 1.002 | 6.699  | 150      | Circular  |
|                       |             |              |        |           |          |           |           | 0           | 1.003 | 6.679  | 150      | Circular  |

22/08/2025

Manhole Schedule

| Node       | Easting (m) | Northing (m) | CL (m) | Depth (m) | Dia (mm) | Node Type | MH Type   | Connections                                                                        | Link | IL (m) | Dia (mm) | Link Type |          |
|------------|-------------|--------------|--------|-----------|----------|-----------|-----------|------------------------------------------------------------------------------------|------|--------|----------|-----------|----------|
| S5         | 492197.389  | 100361.048   | 8.100  | 1.513     | 1200     | Manhole   | Adoptable |  | 1    | 1.003  | 6.587    | 150       | Circular |
| S6 Outfall | 492206.838  | 100361.012   | 7.700  | 2.015     | 1200     | Manhole   | Adoptable |  | 0    | 1.004  | 6.587    | 150       | Circular |
|            |             |              |        |           |          |           |           |                                                                                    | 1    | 1.004  | 5.685    | 150       | Circular |

Simulation Settings

|                      |        |                        |        |                            |     |
|----------------------|--------|------------------------|--------|----------------------------|-----|
| Rainfall Methodology | FEH-22 | Analysis Speed         | Normal | Additional Storage (m³/ha) | 0.0 |
| Summer CV            | 1.000  | Skip Steady State      | x      | Check Discharge Rate(s)    | x   |
| Winter CV            | 1.000  | Drain Down Time (mins) | 240    | Check Discharge Volume     | x   |

| Storm Durations |    |    |     |     |     |     |     |     |     |     |      |  |
|-----------------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|------|--|
| 15              | 30 | 60 | 120 | 180 | 240 | 360 | 480 | 600 | 720 | 960 | 1440 |  |

| Return Period (years) | Climate Change (CC %) | Additional Area (A %) | Additional Flow (Q %) |
|-----------------------|-----------------------|-----------------------|-----------------------|
| 100                   | 45                    | 0                     | 0                     |

Node S6 Outfall Surcharged Outfall

|                                    |   |                               |   |                              |                       |
|------------------------------------|---|-------------------------------|---|------------------------------|-----------------------|
| Overrides Design Area              | x | Depression Storage Area (m²)  | 0 | Evapo-transpiration (mm/day) | 0                     |
| Overrides Design Additional Inflow | x | Depression Storage Depth (mm) | 0 |                              | Applies to All storms |

| Time (mins) | Depth (m) | Time (mins) | Depth (m) |
|-------------|-----------|-------------|-----------|
| 0           | 0.150     | 1440        | 0.150     |

Node S4 Flow Control Online Hydro-Brake® Control

|                          |       |                         |                                |
|--------------------------|-------|-------------------------|--------------------------------|
| Flap Valve               | x     | Objective               | (HE) Minimise upstream storage |
| Replaces Downstream Link | ✓     | Sump Available          | ✓                              |
| Invert Level (m)         | 6.679 | Product Number          | CTL-SHE-0032-5000-1000-5000    |
| Design Depth (m)         | 1.000 | Min Outlet Diameter (m) | 0.075                          |
| Design Flow (l/s)        | 0.5   | Min Node Diameter (mm)  | 1200                           |

Node S1 Permeable Paving Carpark Storage Structure

|                             |         |                           |       |               |       |
|-----------------------------|---------|---------------------------|-------|---------------|-------|
| Base Inf Coefficient (m/hr) | 0.00000 | Invert Level (m)          | 6.786 | Slope (1:X)   | 500.0 |
| Side Inf Coefficient (m/hr) | 0.00000 | Time to half empty (mins) |       | Depth (m)     |       |
| Safety Factor               | 2.0     | Width (m)                 | 7.591 | Inf Depth (m) |       |
| Porosity                    | 0.30    | Length (m)                | 9.685 |               |       |

Node S2 Permeable Paving Carpark Storage Structure

|                             |         |                           |       |               |       |
|-----------------------------|---------|---------------------------|-------|---------------|-------|
| Base Inf Coefficient (m/hr) | 0.00000 | Invert Level (m)          | 6.751 | Slope (1:X)   | 500.0 |
| Side Inf Coefficient (m/hr) | 0.00000 | Time to half empty (mins) |       | Depth (m)     |       |
| Safety Factor               | 2.0     | Width (m)                 | 8.901 | Inf Depth (m) |       |
| Porosity                    | 0.30    | Length (m)                | 5.269 |               |       |

Node S3 (Permeable Paving) Carpark Storage Structure

|                             |         |                           |        |               |       |
|-----------------------------|---------|---------------------------|--------|---------------|-------|
| Base Inf Coefficient (m/hr) | 0.00000 | Invert Level (m)          | 6.699  | Slope (1:X)   | 500.0 |
| Side Inf Coefficient (m/hr) | 0.00000 | Time to half empty (mins) |        | Depth (m)     |       |
| Safety Factor               | 2.0     | Width (m)                 | 2.948  | Inf Depth (m) |       |
| Porosity                    | 0.30    | Length (m)                | 14.016 |               |       |

## **APPENDIX F**

### **Proposed Site Layout**



# Greencourt Drive

Site Plan - As Proposed 1:10

|      |                                                       |    |          |
|------|-------------------------------------------------------|----|----------|
| A    | Red line amended - Re-issued for Planning Application | NJ | 25-09-24 |
| -    | Issued for Planning Application                       | NJ | 30-07-24 |
| Rev. |                                                       | By | Date     |

Wildern Architecture Ltd  
The Hawthorns, 105 Dibbles Road,  
Warsash, Southampton, SO31 9JL  
07920 260758

# Project

## Land adjacent to 21 Greencourt Drive, Bersted, PO21 5EU

Client

| <p>Title</p> <h1>Site Plan - As Proposed</h1> |             |                 |           |
|-----------------------------------------------|-------------|-----------------|-----------|
| <p>Date March 23</p>                          |             | <p>Drawn By</p> | <p>NJ</p> |
| Job No.                                       | Drawing No. | Scale           | Revision  |
| W22-020                                       | 102         | 1:100@A1        | A         |