

Foul and Surface Water Drainage Report

The Grange, Westergate

For

Deborah and Christopher Blows

Rev – **PL-**

Reference **C3388**

Date **10th June 2025**

Revision	Date of Issue	Comments	Prepared By	Checked By
PL-	10/06/2025	Initial Issue	MR	CS

Contents

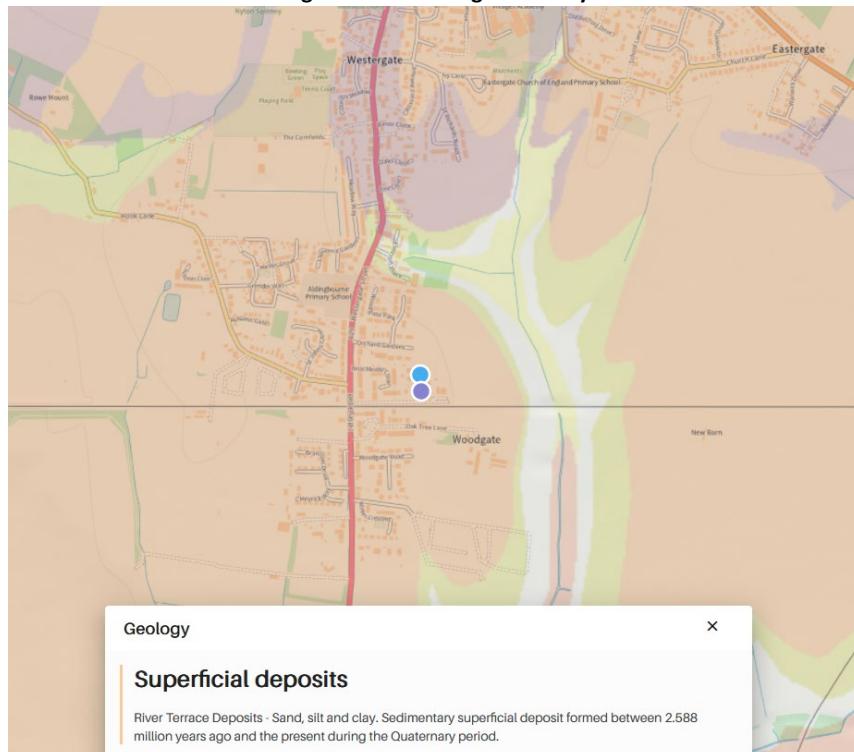
1	INTRODUCTION	3
2	EXECUTIVE SUMMARY:.....	4
3	SITE GEOLOGY	4
4	EXISTING DRAINAGE.....	6
5	PROPOSED DRAINAGE STRATEGY	6
6	SUMMARY AND CONCLUSIONS	12
7	APPENDICES	13

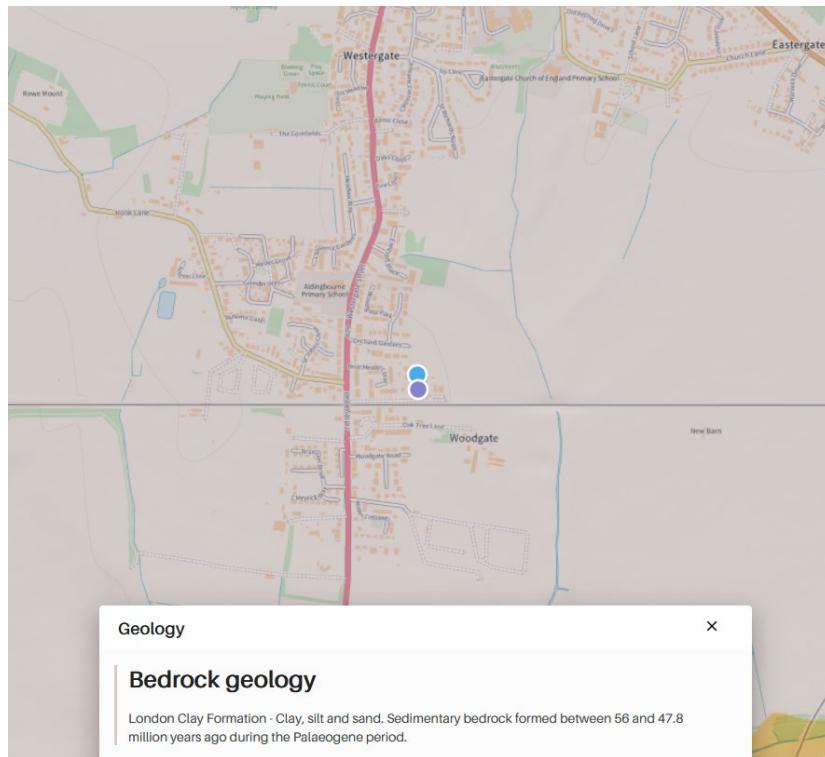
1 Introduction

- 1.1.1 CGS Civils Ltd has been appointed to undertake a drainage strategy report for a proposed development at Land north of the Grange, Westergate.
- 1.1.2 The purpose of this drainage strategy is to demonstrate how the development area can be satisfactorily drained without increasing flood risk onsite and elsewhere.
- 1.1.3 The site currently contains a mobile home. The proposed development will compromise a new residential dwelling with a garage and, driveway and associated parking space. The proposed development is located as OS Grid Reference **SU 93979 04401** and has the post code **PO20 3SQ**.
- 1.1.4 The proposed site layout can be found in **Appendix A**.

Fig 1. Site Location

2 Executive Summary:


- 2.1.1 Surface water runoff is to be discharged into the ground via permeable paving voided subbase. All roof and hard paved areas are to be collected into a positive drainage network before discharging into the ground with a recorded infiltration rate of 3.04×10^{-6} m/s. The proposed drainage network has been designed to cater for the 1 in 100-year +45% storm.
- 2.1.2 The foul water will discharge to an existing foul water manhole located onsite. This connection is subject to Southern Water approval under a Section 106 agreement.


3 Site Geology

3.1 British Geological Survey information

- 3.1.1 The British Geological Survey confirms the bedrock geology to be made up London Clay Formation- Clay, Silt and Sand. The BGS website confirms the superficial deposits on site to be made up of River Terrace Deposits- Sand, Silt and Clay.
- 3.1.2 The British Geological survey also holds records of historical boreholes near the site which give some insight into the ground geology.
 - Borehole **SU90SW51** (Located approx. 600m North-East of the site) – Ground geology (Clay, clayey sand)
 - Borehole **SU90NW72** (Located approx. 750m North of the site) – Ground geology (Silt, clayey gravel, pebbly sand)
 - Borehole **SU90SW56** (Located approx. 400m South of the site) – Ground geology (sandy brown clay, clay with stones)

Fig 2. British Geological Survey

Snippet from BGS Website showing Bedrock geology and superficial deposits
<http://mapapps.bgs.ac.uk/geologyofbritain/home.html?>

Snippet from BGS Website showing Historical Borehole Logs location

3.1.3 The Historical Borehole Logs can be found in **Appendix B**.

3.2 Geological Assessment

3.2.1 Groundwater monitoring and soakage testing was carried out by Ground Management Ltd on 2nd May 2025. The investigation included the excavation of 2 No. boreholes, each to a depth of 3 metres below ground level (mbgl). A standpipe was installed in each borehole to facilitate ongoing groundwater level monitoring. Groundwater levels were recorded regularly between 3rd December 2024 and 30th March 2025. The highest groundwater levels observed were 0.780 mbgl in BH1 and 0.830 mbgl in BH2.

3.2.2 An infiltration test to BRE365 was conducted within a trial pit on site. As per BRE365, 3 No. tests were performed within a trial pit measuring $0.3 \times 0.5 \times 0.6$ m deep. The worst-case recorded infiltration rate is 3.04×10^{-6} m/s. No groundwater was encountered within the trial pit during testing

3.2.3 The groundwater monitoring and soakage testing report can be found in **Appendix C**.

4 Existing Drainage

4.1.1 It is not currently known how existing site discharges surface water runoff, however it is presumed that all surface water runoff is discharged into ground via infiltration.

5 Proposed Drainage Strategy

5.1 SuDS Hierarchy

5.1.1 All options for the destination of run-off generated on site have been assessed in line with the SuDS hierarchy as set out in Building Regulations Part H document and DEFRA's Draft National Standards for SuDS.

Table 1. SuDS Hierarchy

Discharge Destination	
Rainwater Harvesting	N/A
Discharge to Ground	YES- all surface water runoff from the roof and hard paved areas are discharged into the ground with a recorded infiltration rate of 3.04×10^{-6} m/s.
Discharge to Watercourse	N/A
Discharge to Surface Water Sewer	N/A
Discharge to Other Sewer	No surface water discharge permitted to existing foul sewer owned by Southern Water.

5.2 Proposed Hydraulic Calculation Specifications:

Table 2. SuDS Hierarchy

Hydraulic Calculations Settings:	
Rainfall Methodology	FEH-22
Volumetric Run-off Coefficient Cv	1.00
CV Winter and Summer	1.00 / 1.00
Additional Storage (m ³ / ha)	0.0
Permeable Paving Design	Base Coefficient (m/hr): 0.01094 Side Coefficient (m/hr): 0.00000 Factor of Safety: 2 Porosity: 30% Time to Half Empty (mins): 428

5.3 Surface Water Drainage

- 5.3.1 Based upon the results of the onsite soakage testing to BRE365, which yielded the slowest infiltration rate of $3.04 \times 10^{-6} \text{ m/s}$, it is proposed that the site will discharge all surface water into ground. All roof and hard paved areas are to be collected into a positive drainage network before being discharged into ground.
- 5.3.2 Groundwater monitoring and soakage testing confirm that the site is underlain by a high groundwater table. The highest recorded groundwater level was 0.830mbgl, within BH2, which is located within the proposed driveway. To mitigate potential groundwater ingress, the proposed drainage design will ensure that infiltration features are installed as shallow as possible.
- 5.3.3 All surface water runoff will be discharged into the permeable paving system, which incorporates a 450 mm thick voided sub-base providing the required surface water storage volume of 25.91 m³. Surface water runoff from roof areas will be conveyed to the voided sub-base via distribution tanks located a minimum of 5 metres from any building.
- 5.3.4 The proposed bioretention planter is designed to reduce the required storage volume within the permeable paving voided subbase by providing additional storage. Surface water runoff will be temporarily held with the planter before discharging into the voided subbase for further infiltration.
- 5.3.5 To ensure that the drainage system remains free from obstruction by leaves, debris, and sediment, it is proposed to install a RainTaina filter chamber at locations where rainwater downpipes are not connected directly to a catchpit chamber.
- 5.3.6 The drainage network has been designed to accommodate a critical 1 in 100-year storm event with an additional 45% allowance for climate change.
- 5.3.7 The only alternative surface water discharge point identified is an existing foul water sewer owned by Southern Water. However, Southern Water does not permit the discharge of surface water into the foul sewer network.
- 5.3.8 Proposed Drainage Strategy, Contributing Area Plan & Exceedance Flow Routes, Proposed Typical Construction Details and Hydraulic calculations have been carried out which can be found at **Appendix D**.

5.4 Water Quality

- 5.4.1 A key requirement of any SuDS system is that it protects the receiving water body from the risk of pollution.
- 5.4.2 Frequent and short duration rainfall events are those that are most loaded with potential contaminants (silts, fines, heavy metals, and various organic and inorganic contaminants) Therefore the first 5-10mm of rainfall should be adequately treated with SuDS.
- 5.4.3 The new SuDS Manual (Ciria C753, November 2015) introduces slightly different approach compared to the previous version for the water quality management of surface water. The Manual describes risks posed by the surface water runoff to the receiving environment as a function of:
 - The pollution hazard at a particular site (i.e., the pollution source)
 - The effectiveness of SuDS treatment components in reducing levels of pollutants to environmentally acceptable levels
 - The sensitivity of the receiving environment
- 5.4.4 The recommended approaches for water quality risk management are given in the SuDS Manual Table 26.1.

Table 26.1 from SuDS manual. Approaches to Water Quality Risk Management

Table 26.1 Approaches to Water Quality Risk Management			
Design method	Hazard Characterisation	Risk Reduction	
		For Surface Water	For Groundwater
Simple Index Approach	Simple pollution hazard indices based on land use (Table 26.2)	Simple SuDS hazard mitigation indices (Table 26.3)	Simple SuDS hazard mitigation indices (Table 26.4)
Risk Screening	Factors characterising traffic density and extent of infiltration likely to occur (Table 26.5)	N/A	Factors characterising unsaturated soil depth and type, and predominant flow type through the soils (Table 26.5)
Detailed Risk Assessment	Site specific information used to define likely pollutants and their significance	More detailed, component specific performance information used to demonstrate that the proposed SuDS components reduce the hazard to acceptable levels	
Process-based treatment modelling	Time series rainfall used with generic pollution characteristics to determine statistical distributions of likely concentrations and loadings in the runoff	Models that represent the treatment processes in the proposed SuDS components give estimates of reductions in even mean discharge concentrations and total annual load reductions delivered by the system	

5.4.5 As per Table 26.1 Simple Index approach will be used as a design method for this site.

5.4.6 Table 26.2 will provide hazard classification of different land uses. The land uses for the surface water drainage for this site are.

- Residential Roofs
- Individual Property driveways and residential car parks
- Low traffic roads

5.4.7 To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index for each contaminant type that equals or exceeds the pollution hazard index for each contaminant type. Therefore, the following must be achieved for the surface running off the site.

Total SuDS mitigation index >=pollution hazard index

5.4.8 Pollution Hazard Indices are given for different land uses in Table 26.2 of the SuDS manual;

Table 26.2 from SuDS manual. Pollution Hazard Indices for Different Land Use Classifications

Table 26.2 Pollution hazard indices for different land use classifications				
Land Use	Pollution Hazard Level	Total Suspended solids (TSS)	Metals	Hydro-Carbons
Residential roofs	Very Low	0.2	0.2	0.05
Other roofs (Typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (e.g., cul-de-sacs, homezones and general access roads) and non-residential car parking with infrequent change (e.g., schools, offices) i.e., < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (e.g., hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7
Sites with heavy pollution (e.g., haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways	High	0.8	0.8	0.9

5.4.9 From Table 26.2 the following information is tabulated in Table 1

Table 3: Pollution hazard index and destination of runoff for the proposed site

Table 3: Pollution Hazard Index and Destination of runoff for the proposed Site					
Land Use	Destination of Runoff	Pollution Hazard Level	Total Suspended Solids	Metals	Hydrocarbons
Residential Roof	Ground Water	Very Low	0.2	0.2	0.05
Individual driveways, residential car parks and low traffic roads	Ground water	Low	0.5	0.4	0.4

5.4.10 The SuDS mitigation index will be obtained from Table 26.4 (for groundwater) of the SuDS manual.

Table 26.4 from SuDS manual. Indicative SuDS Mitigation Indices for discharges to ground waters.

5.4.11 SuDS mitigation index are tabulated in Table 5 as followed.

Table 26.3 Indicative SuDS mitigation indices for discharges to groundwater			
Characteristics of the material overlying the proposed infiltration surface, through which the runoff percolates	TSS	Metals	Hydrocarbons
A layer of dense vegetation underlain by a soil with good containment attenuation potential of at least 300mm in depth	0.6	0.5	0.6
A soil with good contaminant attenuation potential of at least 300mm in depth	0.4	0.3	0.3
Infiltration trench (where a suitable depth of filtration material is included that provides treatment, i.e., graded gravel with sufficient smaller particles but not single size coarse aggregate such as 20mm gravel) underlain by a soil with good contaminant attenuation potential of at least 300mm in depth.	0.4	0.4	0.4
Constructed permeable pavement (where a suitable filtration layer is included that provides treatment, and including a geotextile at the base separating the foundation from the subgrade) underlain by a soil with good contaminant attenuation potential of at least 300mm in depth	0.7	0.6	0.7
Bioretention underlain by a soil with good contaminant attenuation potential of at least 300mm in depth	0.8	0.8	0.8
Proprietary treatment systems	These must demonstrate that they can address each of the contaminant types to acceptable levels for inflow concentrations relevant to the contributing drainage area		

Table 4: SuDS mitigation index

Table 4 Mitigation Indices						
Runoff Source	Destination of Runoff	Mitigation Index Source	Type of SuDS Component	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential Roof	Ground water	Table 26.3 (for ground waters)	Permeable Pavement	0.7	0.6	0.7
Individual driveways, residential car parks and low traffic roads	Ground water	Table 26.3 (for ground waters)	Permeable Pavement	0.7	0.6	0.7

5.4.12 The above analysis demonstrates that the SuDS devices within the design will mitigate any pollution present within the surface water system.

5.5 Foul water drainage

5.5.1 The foul water will discharge into the existing foul water manhole located onsite. This connection subject to approval of a S106 application by Southern Water.

5.5.2 A CCTV survey should be undertaken to confirm if a connection onsite is possible and if remedial works are required.

5.6 Construction Phase Drainage

5.6.1 It is an offence to cause or knowingly permit the entry of any polluting, poisonous or noxious material in the water environment. If the pollution is serious enough to lower the ecological status of the water body as set out in terms by the Water Framework Directive (2000/60/EC) than prosecution may occur.

5.6.2 Remediation of any damage caused will not require the polluter to be prosecuted first. If the water pollution is serious enough to be classed an environmental damage, the damage will require to be remediated such that the area is returned to the condition it would have been in if the damage had not occurred.

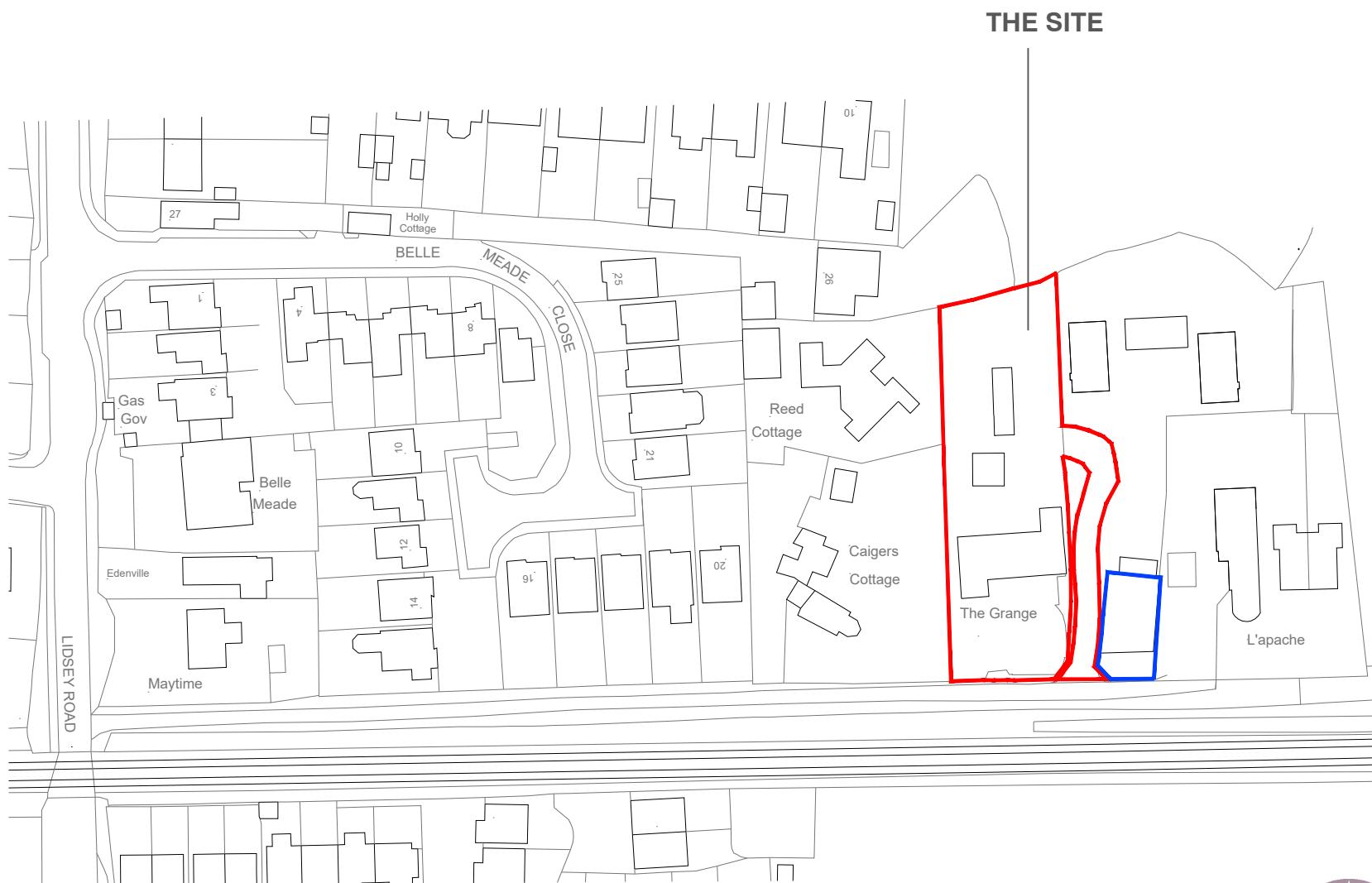
5.6.3 If any pollution has not been reported or the polluter has not taken actions to prevent any further damage; they would then be causing an offence. Third parties (e.g., Private water supply users, landowners, recreation users and the public) who may be affected by possible damage may also report the risk of any environmental damage to the enforcing authority.

5.6.4 The principles of SuDS (Sustainable Drainage Systems) shall be applied to all components of design and construction regarding surface water management. Any design or site works that may impact on the site drainage or the water quality shall:

- Soakaway where soils allow
- Consider and manage erosion
- Remove pollutants in surface water
- Retain any silts on site and prevent silts from discharging to watercourses or drains
- Keep runoff rates at existing greenfield runoff
- Prevent accidental spillages reaching watercourse

5.6.5 As infiltration on site is viable, the temporary drainage for the development will be in the form of land drains which will discharge into the ground.

5.6.6 Pollution will be controlled via the use of catchpit manholes and geotextiles.

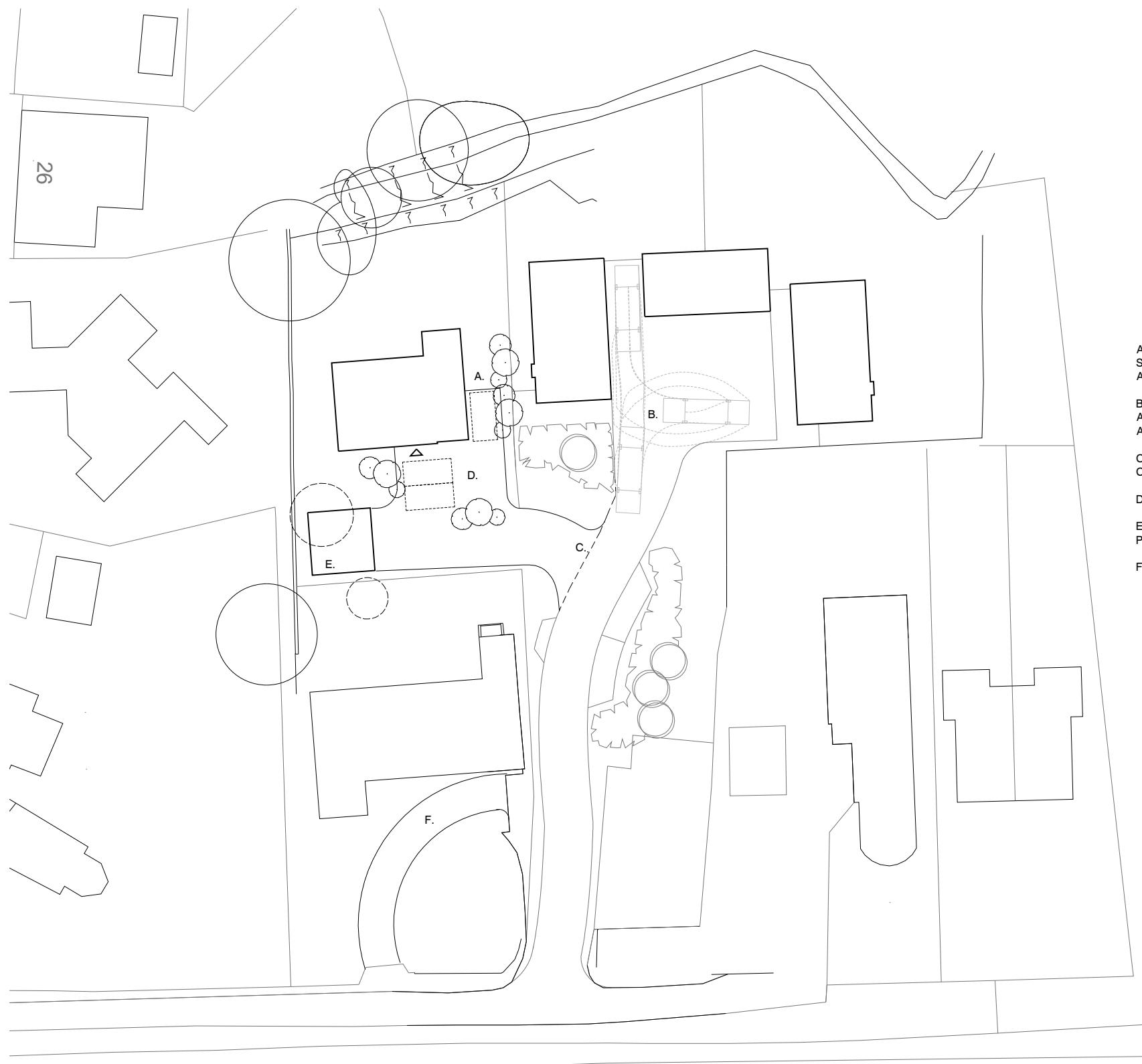

5.6.7 Any potential hazardous substances will be within a controlled compound with a separate drainage system that will contain a penstock valve / containment kit in the event of a spillage.

6 Summary and Conclusions

- 6.1.1 CGS Civils has been instructed by to produce a Drainage statement under National Planning Policy Framework (NPPF) to support the Planning Application for the construction of a new residential dwelling with garage and associated driveway.
- 6.1.2 The Surface Water will discharge into the ground with a recorded infiltration rate. The drainage network has been designed for a critical 1 in 100 year + 45% storm event.
- 6.1.3 The Foul water will discharge into the existing foul water manhole located within the site boundary. The proposed connection is to be agreed under Southern Water S106 application.
- 6.1.4 The report has demonstrated that the proposed drainage measures ensure that suitable means of surface water and foul drainage can be achieved for the proposed development.

7 Appendices

7.1 Appendix A – Site Plan



LOCATION PLAN
SCALE 1:1250 @ a3

0 10 20 60m
Scale 1:1250 @ A3

- DRAFT -

PROPOSED SITE PLAN

0 10 25m

Scale 1:500 @ A3

7.2 **Appendix B – Borehole Logs**

SU 90 NW 72 9359 0501

Westergate

Surface level +10.8 m
Water struck at +7.8 m
September 1981

Block G

Overburden 2.2 m
Mineral 3.8 m
Bedrock 0.8 m+

LOG

Geological classification

Lithology

Thickness Depth
m m

Brickearth	Soil	0.3	0.3
	Silt, brown	0.4	0.7
	Clay, silty, brown, with a few pebbles near base	1.5	2.2
Head Gravel	a 'Very clayey' gravel Gravel: fine with coarse, angular to subrounded; flint, some white and porous Sand: coarse with fine and medium Fines: clay	0.8	3.0
Raised Beach Deposits (younger)	b 'Clayey' pebbly sand Gravel: coarse and fine, angular to subrounded; flint, some white and porous Sand: fine with traces of medium and coarse; quartz Fines: silt, brown	2.0	5.0
	c Sandy gravel Gravel: fine and coarse, angular to well rounded; flint (some white and porous), chalk and other rock fragments Sand: fine with coarse and medium; quartz	1.0	6.0
London Clay	Clay, stiff, dark olive grey with a few rounded flint pebbles	0.8+	6.8

GRADING

	Mean for deposit percentages			Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines				Sand			
					-½	½-1	1-2	+1-4	+4-16	+16-64	+64 mm	
a	37	17	46	2.2-3.0	37	5	4	8	29	17	0	
b	15	79	6	3.0-4.0	15	70	1	1	6	7	0	
				4.0-5.0	15	84	1	0	0	0	0	
				Mean	15	77	1	1	3	3	0	
c	3	56	41	5.0-6.0	3	41	7	8	19	22	0	
b+c	11	72	17	3.0-6.0	11	66	3	3	8	9	0	
a+b+c	16	60	24	2.2-6.0	16	53	3	4	13	11	0	

SU 90 SW 51

9454 0470

Eastergate

Block G

Surface level +9.3 m
Water struck at +7.8 m
September 1981

Overburden 1.5 m
Mineral 1.4 m
Bedrock 2.1 m+

British Geological Survey
LOG

British Geological Survey

British Geological Survey

Geological classification

Lithology

Thickness
mDepth
m

Brickearth

Soil

0.5

0.5

Clay, silty, mottled brown, with sand and pebbles
near base

1.0

1.5

Raised Beach Deposits
(younger)

'Clayey' pebbly sand

1.4

2.9

Gravel: coarse and fine; flint (some white
and porous) with some chalk, sandstone and
ironstone
Sand: fine with some medium and coarse
Fines: silt

London Clay

Clay, brown at top, grey below

2.1+

5.0

British Geological Survey
GRADING

British Geological Survey

British Geological Survey

Mean for deposit
percentagesDepth below
surface (m)

Percentages

Fines Sand Gravel

Fines Sand

Gravel

- $\frac{1}{4}$ $\frac{1}{4}$ - $\frac{1}{2}$ $\frac{1}{2}$ - 1 +1 - 4

+4 -16 +16 -64 +64 mm

11

75

14

1.5-2.5

2.5-2.9

Mean

13

8

11

69

65

68

2

7

4

2

5

3

7

7

7

7

8

7

0

0

0

British Geological Survey

DETAILS OF STRATA

317/453

<< < Prev Page 1 of 3 Next > >>

Date 14/5/75.

SU90SW 59 945-045

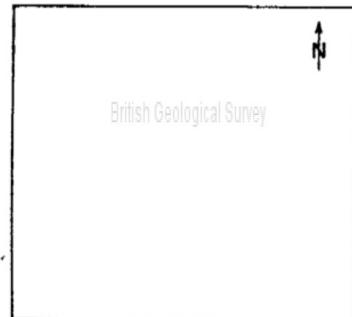
BORE HOLE LOGSu 8 3/4. Log Ref. 0442HOLE NO. 1Land at WOODHAM FERRYBritish Geological Survey EASTGATE EASTGATE.

Ordnance Plot No. _____

Water Struck at 2 - 0 metres. Rest Water Level _____ metres after _____ hours

SU90SW

British Geological Survey
~~CONFIDENTIAL~~
~~IN CONFIDENCE~~CONFIDENTIAL TO ERST Reg


Description of Material	From	To	Depth of Seam metres	Total Depth metres
	metres	metres		
Top Soil	0 - 0	0 - 3	0 - 3	0 - 3
Brown Silty Sandy Clay	0 - 3	1 - 5	1 - 2	1 - 2
Brown Fine Silty Sand.	1 - 5	4 - 7	3 - 2	3 - 2
Blue Silty Clay	4 - 7	6 - 0	1 - 3	6 - 0

REMARKSSketch PlanBritish Geological Survey
Samples taken at

British Geological Survey

British Geological Survey

(1) 3 - 5 metres (2) _____ metres (3) _____ metres (4) _____ metres
 (5) _____ metres (6) _____ metres (7) _____ metres (8) _____ metres

7.3 **Appendix C – Groundwater Monitoring and Soakage Testing Report**

GROUNDWATER MONITORING AND SOAKAGE TESTING
AT
SITE ADJACENT TO THE GRANGE, WESTERGATE
FOR
DEBORAH AND CHRISTOPHER BLOWS

G6625

02 May 2025

Ground Management Ltd
Civil and Geotechnical Engineering Services

DOCUMENT CONTROL

Report Title: G6625 Site Adjacent to The Grange, Westergate
Groundwater Monitoring and Soakage Testing

Report No./ Issue: G6625-02/1

Report Status: Issued for Client Comment

Distribution: Deborah & Christopher Blows PDF copy 02 May 2025

Prepared by: Alistair Tyler BSc MSc DIC CEng MICE

Signed:

Ground Management Ltd Robin Hill Farm Clay Lane Fishbourne Chichester West Sussex PO18 8AB

CONTENTS

1.0 Introduction

Figure 1: Site Location Plan

Figure 2: Exploratory Hole Location Plan

Exploratory Hole Logs: Boreholes BH1 & BH2

Trial Pit TP1

Dynamic Probe (DPSH) DP2

Soakage Test Results Summary

Soakage Test Results

Ground Water Monitoring Observations

Site Photographs

1.0 INTRODUCTION

- 1.1 Ground Management Ltd have carried out standpipe installation and provided support with groundwater monitoring and soakage testing on the site adjacent to The Grange, Westergate, located as indicated on Figure 1.
- 1.2 The work included excavation of two boreholes referenced as BH1 and BH2 each to a depth of 3m at the locations indicated on Figure 2. A 19mm diameter standpipe was installed in each completed borehole to allow monitoring of groundwater levels.
- 1.3 A dynamic probe (DPSH) referenced as DP2 was driven adjacent to BH2 to help assess the condition of the soil strata. The probe test results are appended.
- 1.4 Groundwater levels have been recorded with the assistance of the Client during regular monitoring from installation on 3/12/24 to final readings on 30/3/25. A copy of the recorded observations is appended.
- 1.5 Following an initial period of groundwater monitoring a return visit was made on 31/3/25 to set up soakage testing within a hand dug trial pit referenced as TP1. The testing comprised 3 fills of the pit in accordance with BRE365 and continued to 2/4/25. A summary of the results and derived infiltration coefficients is attached together with the plotted test data. The pit was subsequently backfilled.
- 1.6 Copies of the typed exploratory hole logs are attached.
- 1.7 The work was carried out for Deborah and Christopher Blows and nothing in this report confers or purports to confer on any third party, any benefit or any right to enforce any term of this report pursuant to the Contract (Rights of Third Parties) Act 1999.

Ground Management Ltd

Civil and Geotechnical Engineering Services

Robin Hill Farm, Clay Lane, Fishbourne,
CHICHESTER, West Sussex, PO18 8LR

PROJECT NO: G6625

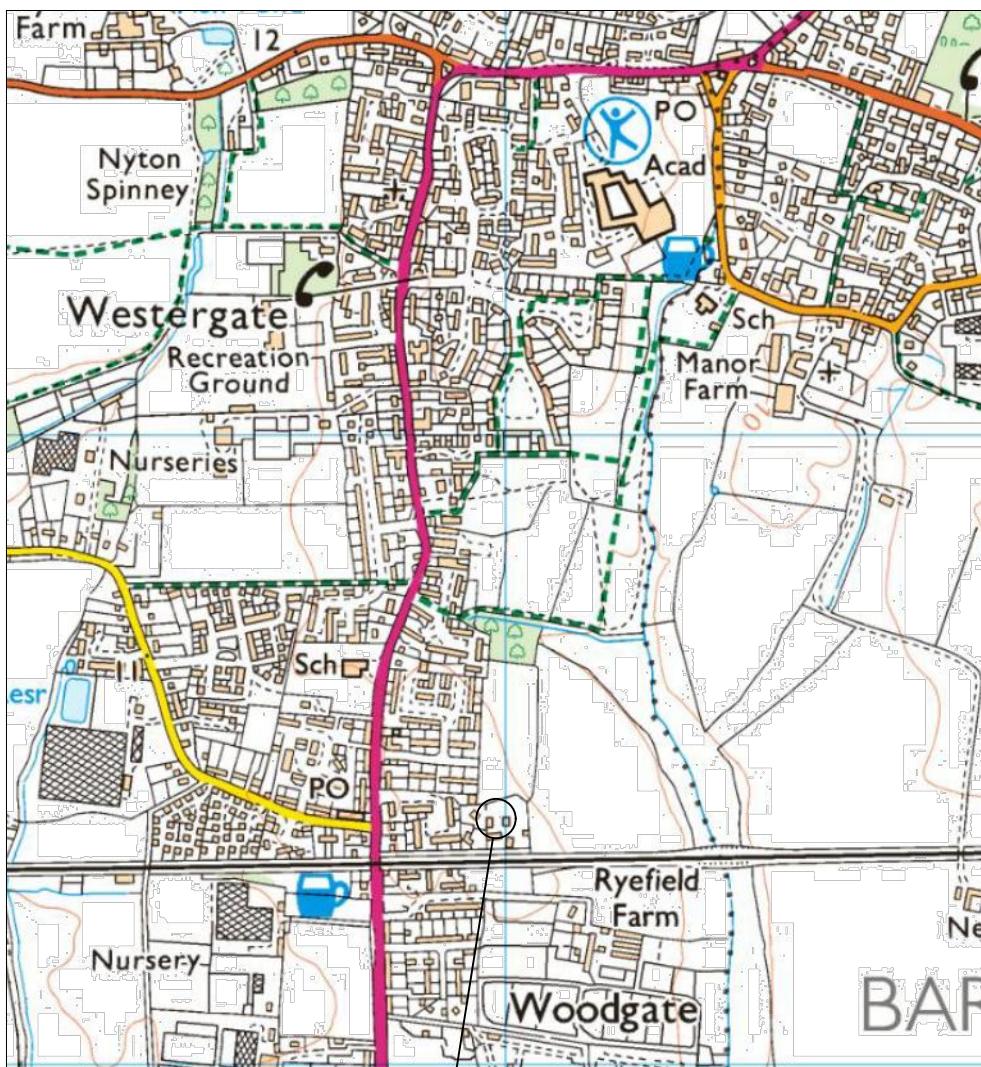
FIGURE REF: Figure 1

PROJECT: Site Adjacent to The Grange, Westergate

PREPARED: AJHT

SECTION: Groundwater Monitoring and Soakage Testing

CHECKED: AJHT


TITLE: Site Location Plan

DATE: Mar 2025

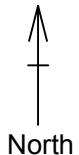
North

(Not to scale)

Site Location

PROJECT: Site Adjacent to The Grange, Westergate

PREPARED: AJHT


SECTION: Groundwater Monitoring and Soakage Testing

CHECKED: AJHT

TITLE: Exploratory Hole Location Plan

DATE: Mar 2025

Exploratory hole locations are indicative only unless dimensioned

Ground Management Ltd

Civil and Geotechnical Engineering Services

Robin Hill Farm Clay Lane Fishbourne

Site

Site Adjacent to The Grange, Westergate

Number
BH1

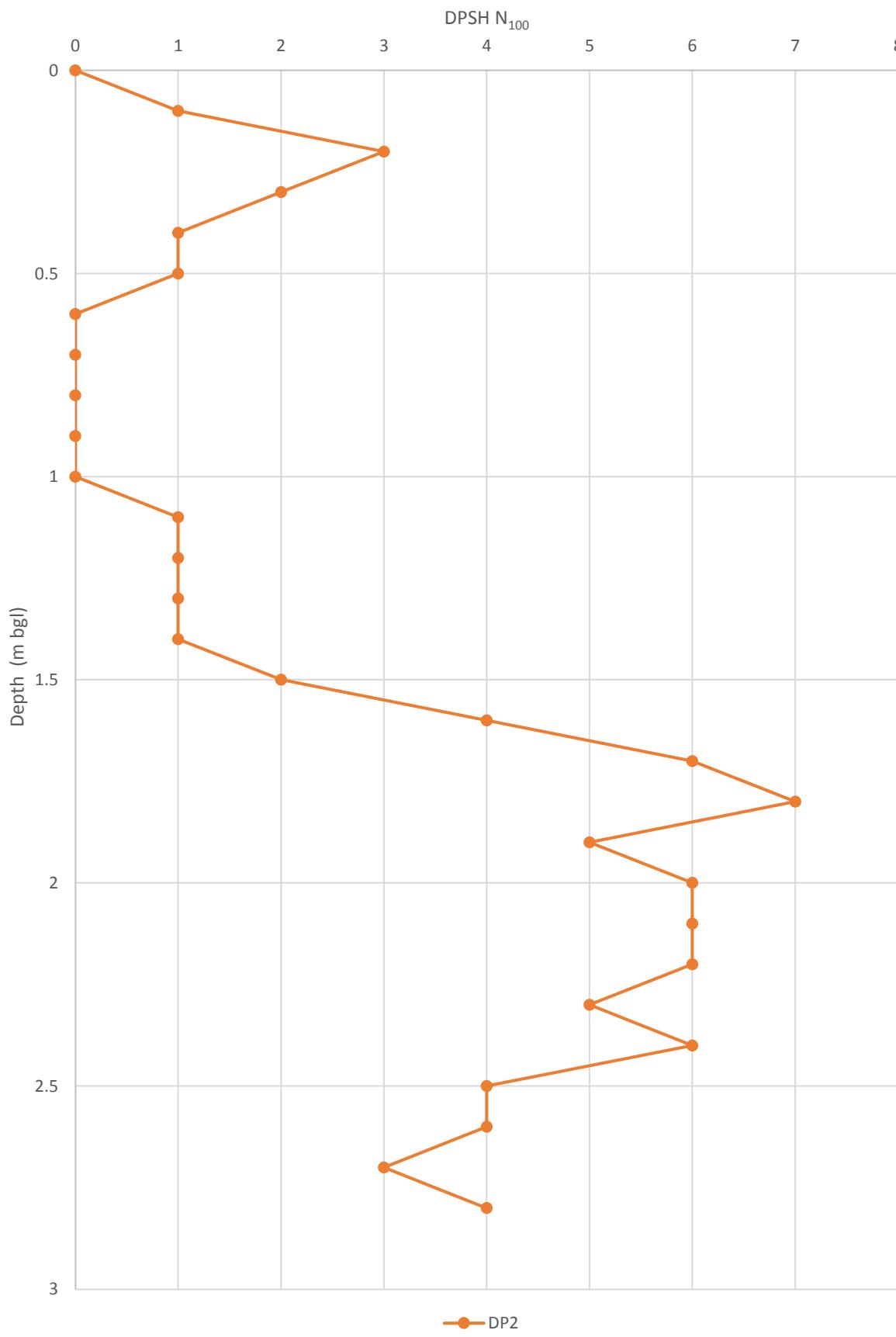
Excavation Method Dynamic (windowless) sampling using Archway Dart		Dimensions 80mm to 1.00m 70mm to 2.00m 60mm to 3.00m	Ground Level (mOD)		Client Deborah & Christopher Blows	Job Number G6625		
		Location See Location Plan	Dates 01/01/2025	Engineer	Sheet 1/1			
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.80-1.00	D1		HV at 0.8m : 30, 30, 30 kPa		(0.30)	Grass over moist brown slightly sandy (fine) slightly clayey silt TOPSOIL with a little coarse medium and fine subangular to subrounded flint gravel. Occasional glass fragments		
1.20-1.60	D2				0.30	Soft to firm becoming firm orange brown silty CLAY with occasional coarse medium and fine subangular flint gravel. Occasional fine root up to 2mm dia.		
1.60-2.00	D3		HV at 1.5m : 45, 50, 50 kPa		(0.90)			
					1.20	Firm orange brown mottled grey silty CLAY with a little coarse medium and fine angular to subangular flint gravel.		
					(0.40)			
					1.60	Yellow brown slightly silty fine to medium SAND		
					(1.40)			
					3.00	Complete at 3.00m		
Remarks Borehole remained open during excavation Some seepage with groundwater rising to 0.9m below ground level 1hr after excavation 19mm dia standpipe installed on completion - 2m slotted with geosoc and gravel surround, then plain with bentonite pellet seal							Scale (approx) 1:20	Logged By AT
							Figure No. G6625.BH1	

Ground Management Ltd		Robin Hill Farm Clay Lane Fishbourne CHICHESTER West Sussex PO18 8AB		Site Site Adjacent to The Grange, Westergate		Number BH2		
Excavation Method		Dimensions	Ground Level (mOD)	Client		Job Number G6625		
Dynamic (windowless) sampling using Archway Dart		80mm to 1.00m 70mm to 2.00m 60mm to 3.00m		Deborah & Christopher Blows				
Location		Dates 01/01/2025		Engineer		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		
					(0.10) 0.10	Grass over moist brown slightly sandy (fine) slightly clayey silt TOPSOIL with a little medium and fine subangular to subrounded flint gravel.		
					(0.30)	MADE GROUND of coarse medium and fine subangular to subrounded flint gravel with some firm brown sandy clay / silt		
			HV at 0.8m : 40, 40, 40 kPa		0.40	Soft to firm becoming firm brown mottled red brown silty CLAY with occasional medium and fine subangular flint gravel.		
			HV at 1.5m : 45,50, 55 kPa		(1.20)			
					1.60	Wet yellow brown slightly silty fine to medium SAND		
					(1.40)			
					3.00	Complete at 3.00m		
Remarks		Borehole remained open during excavation Some seepage with groundwater rising to 0.95m below ground level 1hr after excavation 19mm dia.standpipe installed on completion - 2m slotted with geosoc and gravel surround, then plain with bentonite pellet seal Dynamic probe (super heavy) driven adjacent to borehole - results on separate sheet						
							Scale (approx) 1:20 Logged By AT	

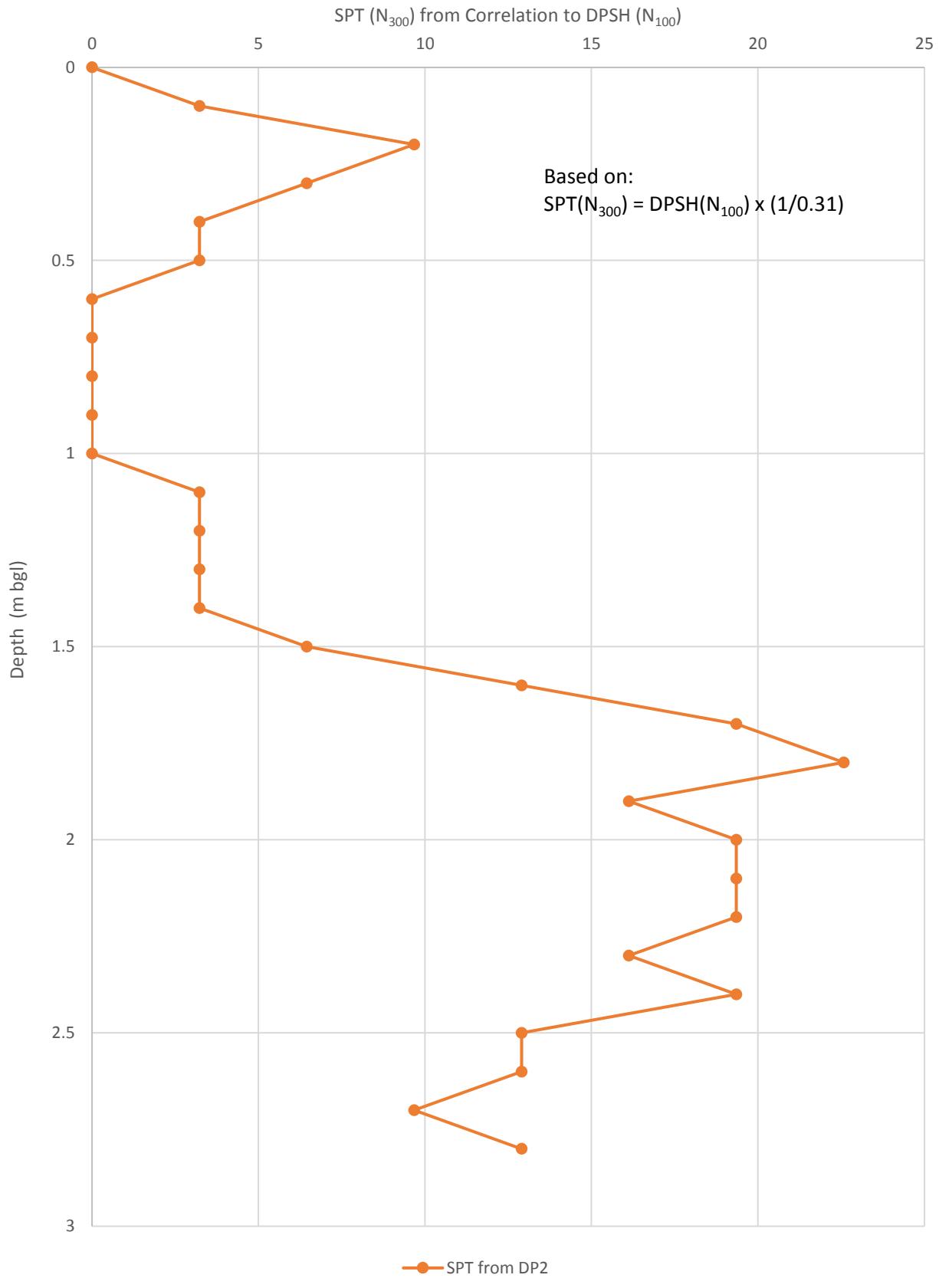
Ground Management Ltd

Civil and Geotechnical Engineering Services

Robin Hill Farm Clay Lane Fishbourne
CHICHESTER West Sussex PO18 8AB


Site

Site Adjacent to The Grange, Westergate


Trial Pit
Number
TP1

Excavation Method Hand dug		Dimensions 0.3 x 0.55	Ground Level (mOD)		Client Deborah & Christopher Blows		Job Number G6625
		Location See Location Plan	Dates 31/03/2025- 02/04/2025			Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						Grass over slightly moist dark brown slightly sandy slightly clayey silt with some coarse medium and fine subangular flint gravel and occasional brick and concrete fragment up to cobble size. Reworked TOPSOIL/made ground, possible relic topsoil at base of stratum	
					(0.50)		
					0.50 (0.10)	Firm orange brown silty CLAY	
					0.60	Complete at 0.60m	
Plan				Remarks			
				Pit sides stable and vertical during excavation Groundwater was not encountered			
				Scale (approx)	Logged By	Figure No.	
				1:10	AT	G6625.TP1	

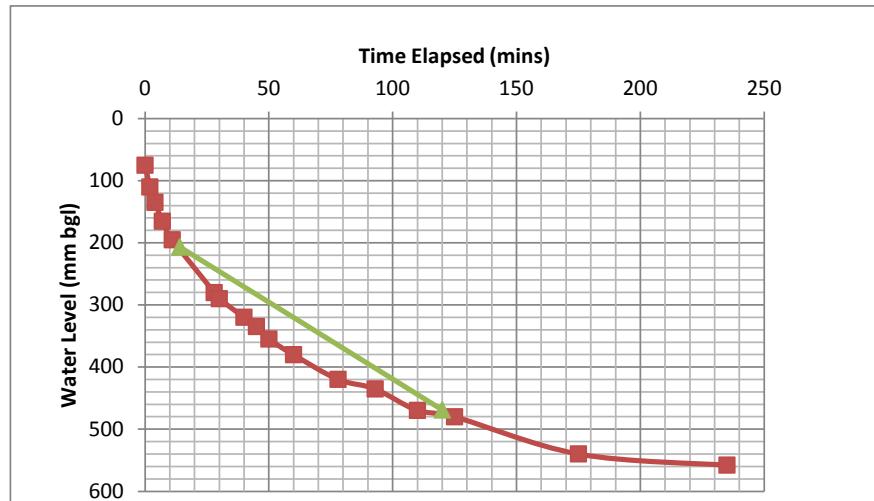
Ground Management Ltd
Site Adjacent to The Grange, Westergate
Dynamic Probe DPSH Results (DP2)

Ground Management Ltd
Site Adjacent to The Grange, Westergate
Dynamic Probe DPSH Results (DP2)
Correlated to SPT

G6625 Site Adj. to The Grange, Westergate
 Soakage Test Results Summary

Trial Pit	Pit Dimensions LxWxD (metres)	Test No.	Water Level at start of test (mm below ground level)	Duration of test (mins)	Fall of water level during test (mm)	Infiltration Coefficient (m/s) (see note)
TP1	0.3 x 0.5 x 0.6	1	75	235	482	1.11×10^{-5}
		2	70	618	430	3.04×10^{-6}
		3	65	588	475	3.34×10^{-6}

Dimensions (m):


width = 0.30

length = 0.55

depth = 0.60

Weather

mainly dry
sunny
spells

0
0 Projected

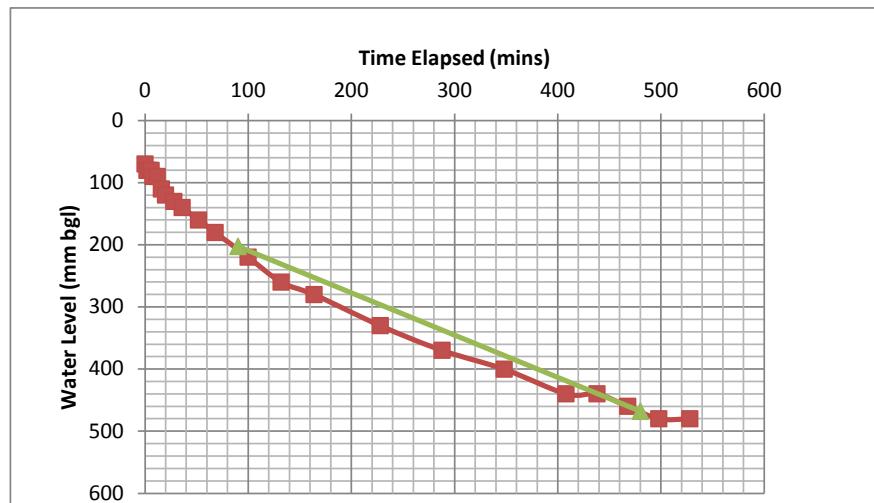
t0	75	
t25	206.25	14
t50	337.5	
t75	468.75	120
t100	600	

fall	0.525
t25 - t75	0.2625
Area t50	0.61125

Infiltration Coefficient = 1.11E-05 m/s

Dimensions (m):

width = 0.30


length = 0.55

depth = 0.60

Date	Time	Date and time	Elapsed	Dip	End Fit
01/04/2025	08:00	01/04/2025 08:00	start	dry	
01/04/2025	08:02:00	01/04/2025 08:02	0	70	
01/04/2025	08:04:00	01/04/2025 08:04	2	80	
01/04/2025	08:06:00	01/04/2025 08:06	4	80	
01/04/2025	08:08:00	01/04/2025 08:08	6	80	
01/04/2025	08:10:00	01/04/2025 08:10	8	90	
01/04/2025	08:14:00	01/04/2025 08:14	12	90	
01/04/2025	08:18:00	01/04/2025 08:18	16	110	
01/04/2025	08:22:00	01/04/2025 08:22	20	120	
01/04/2025	08:30:00	01/04/2025 08:30	28	130	
01/04/2025	08:38:00	01/04/2025 08:38	36	140	
01/04/2025	08:54:00	01/04/2025 08:54	52	160	
01/04/2025	09:10:00	01/04/2025 09:10	68	180	
01/04/2025	09:42:00	01/04/2025 09:42	100	220	
01/04/2025	10:14:00	01/04/2025 10:14	132	260	
01/04/2025	10:46:00	01/04/2025 10:46	164	280	
01/04/2025	11:50:00	01/04/2025 11:50	228	330	
01/04/2025	12:50:00	01/04/2025 12:50	288	370	
01/04/2025	13:50:00	01/04/2025 13:50	348	400	
01/04/2025	14:50:00	01/04/2025 14:50	408	440	
01/04/2025	15:20:00	01/04/2025 15:20	438	440	
01/04/2025	15:50:00	01/04/2025 15:50	468	460	
01/04/2025	16:20:00	01/04/2025 16:20	498	480	
01/04/2025	16:50:00	01/04/2025 16:50	528	480	
01/04/2025	18:20:00	01/04/2025 18:20	618	500	

Weather

mainly dry
sunny
spells

Time (mins)

t0 70

t25 202.5 90

t50 335

t75 467.5 480

t100 600

fall 0.53

t25 - t75 0.265

Area t50 0.6155

0
0 Projected

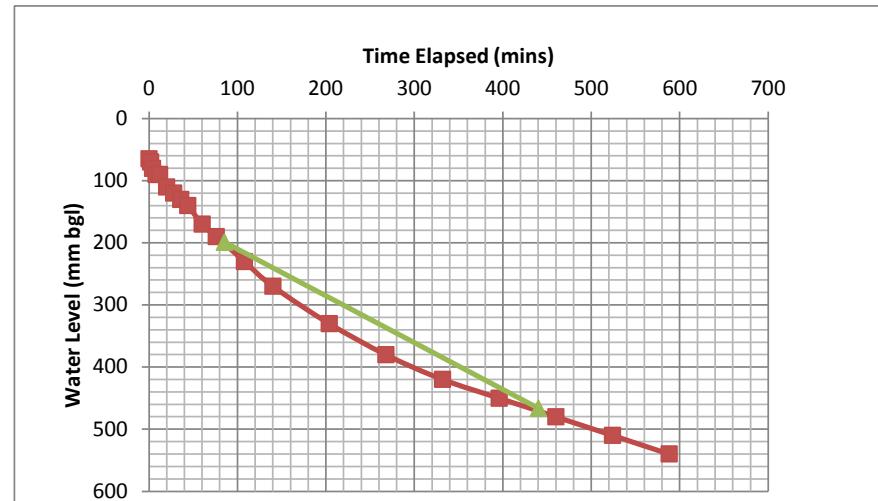
Infiltration Coefficient = 3.04E-06 m/s

TP1 Test 3

Dimensions (m):

width = 0.30

length = 0.55


depth = 0.60

Date	Time	Date and time	Elapsed	Dip
02/04/2025	07:59	02/04/2025 07:59	start	wet
02/04/2025	08:00:00	02/04/2025 08:00	0	65
02/04/2025	08:02:00	02/04/2025 08:02	2	70
02/04/2025	08:04:00	02/04/2025 08:04	4	80
02/04/2025	08:08:00	02/04/2025 08:08	8	90
02/04/2025	08:12:00	02/04/2025 08:12	12	90
02/04/2025	08:20	02/04/2025 08:20	20	110
02/04/2025	08:28:00	02/04/2025 08:28	28	120
02/04/2025	08:36:00	02/04/2025 08:36	36	130
02/04/2025	08:44:00	02/04/2025 08:44	44	140
02/04/2025	09:00:00	02/04/2025 09:00	60	170
02/04/2025	09:16:00	02/04/2025 09:16	76	190
02/04/2025	09:48:00	02/04/2025 09:48	108	230
02/04/2025	10:20:00	02/04/2025 10:20	140	270
02/04/2025	11:24:00	02/04/2025 11:24	204	330
02/04/2025	12:28:00	02/04/2025 12:28	268	380
02/04/2025	13:32:00	02/04/2025 13:32	332	420
02/04/2025	14:36:00	02/04/2025 14:36	396	450
02/04/2025	15:40:00	02/04/2025 15:40	460	480
02/04/2025	16:44	02/04/2025 16:44	524	510
02/04/2025	17:48	02/04/2025 17:48	588	540

Fit

Weather

mainly dry
sunny
spells

Time (mins)

t0	65	
t25	198.75	85
t50	332.5	
t75	466.25	440
t100	600	

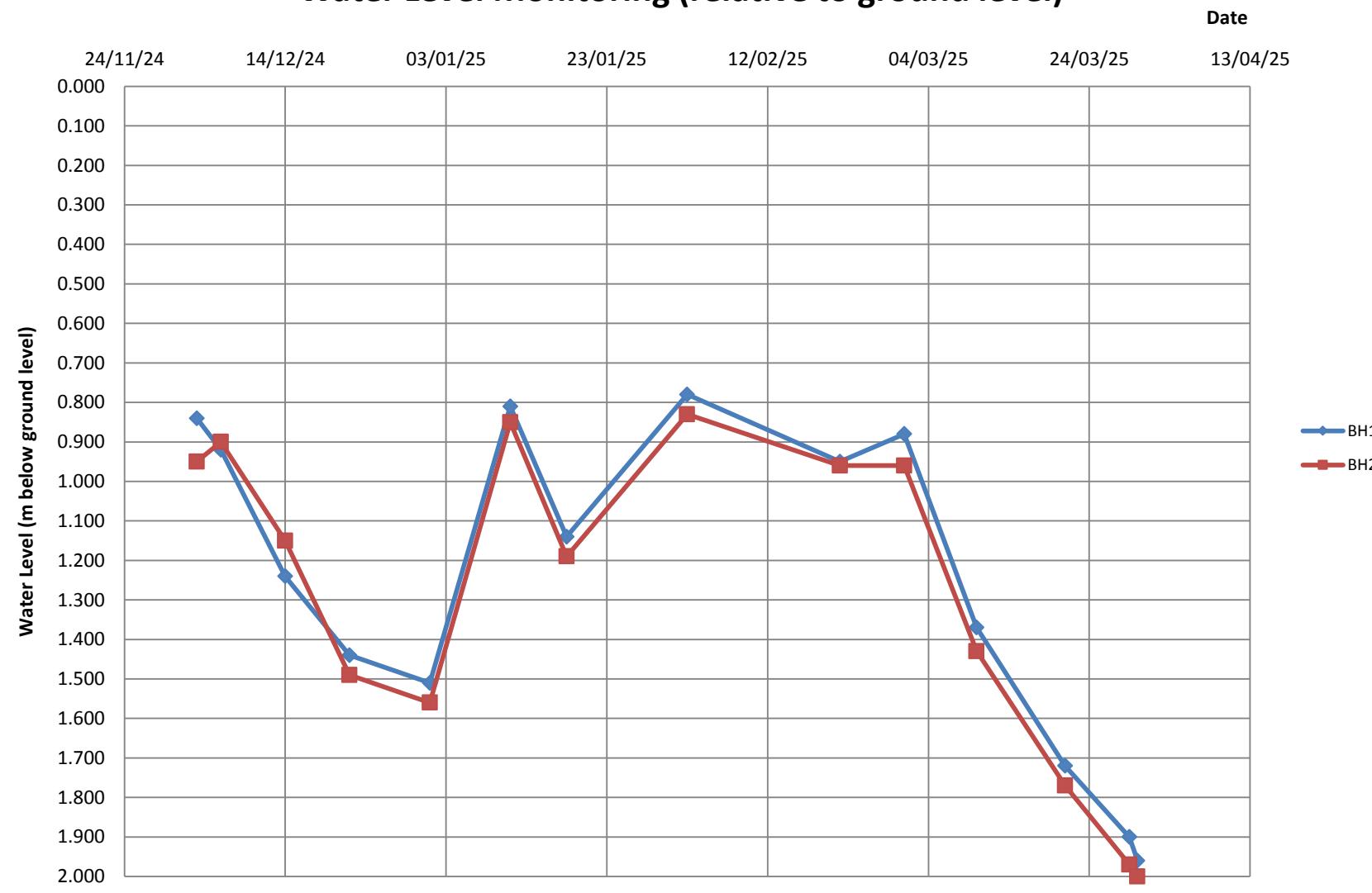
fall	0.535
t25 - t75	0.2675
Area t50	0.61975

0
0 Projected

Infiltration Coefficient = 3.34E-06 m/s

Project No: G6625

Site adjacent to The Grange, Westergate


30-Mar-25

	BH1	BH2		
Upstand (m)	0.400	0.400		
Ground Level (mAOD)				
Cover level (mAOD)	0.400	0.400		
Base dip (m)				

mAOD: metres Above Ordnance Datum

Ground levels estimated by reference to survey (Not available)

G6625 Site Adjacent to The Grange, Westergate Water Level Monitoring (relative to ground level)

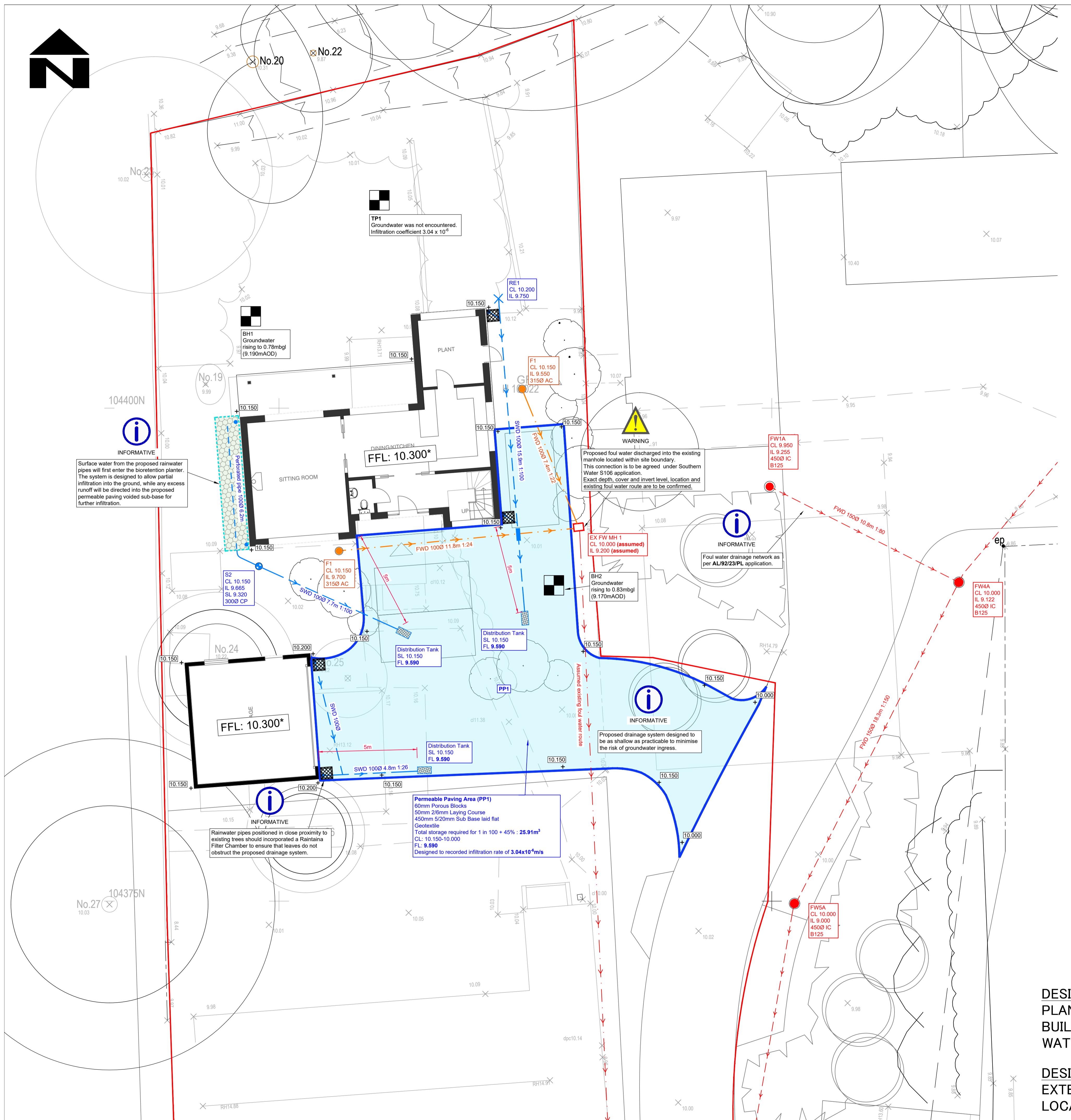
Photograph 1 : BH1 Location

Photograph 2 : BH1 Extracted Samples

Photograph 3 : BH2 Location

Photograph 4 : BH2 Extracted Samples

Photograph 1 : TP1 Excavation Location



Photograph 2 : TP1 Excavation

Photograph 3 : TP1 Arisings

7.4 Appendix D – Proposed Drainage Strategy, Contributing Area Plan & Exceedance Flow Routes, Proposed Typical Construction Details and Hydraulic Calculations.

DESIGN SUBJECT TO THE APPROVAL OF:
PLANNING AUTHORITY
BUILDING CONTROL
WATER AUTHORITY

DESIGN SUBJECT TO THE CONFIRMATION OF:
EXTERNAL LEVELS DESIGN
LOCATION AND DEPTH OF EXISTING UTILITIES

Site Specific Notes

1. Proposed drainage designed based on desktop study, a groundwater monitoring and soakage test report, and all information provided from the site.
2. All storage volumes is designed to the critical 1 in 100 year storm event + 45% of climate change allowance.
3. Surface water runoff from the roof and driveway areas are to be discharged into the ground with a recorded infiltration rate of 3.04×10^{-6} m/s. The proposed drainage system has been designed as shallow as practicable to avoid the risk of groundwater ingress into permeable paving voided subbase.
4. Distribution tanks are to be located min 5m from the buildings.
5. The bioretention planter is introduced to capture runoff at source, allowing for temporary storage and partial infiltration.
6. Paving construction to Client's and manufacturer specification.
7. Foul water drainage is to be discharged into the existing foul water manhole located within the proposed site boundary, and then discharged into the Southern Water public sewer. This connection is to be agreed under S106 Application.

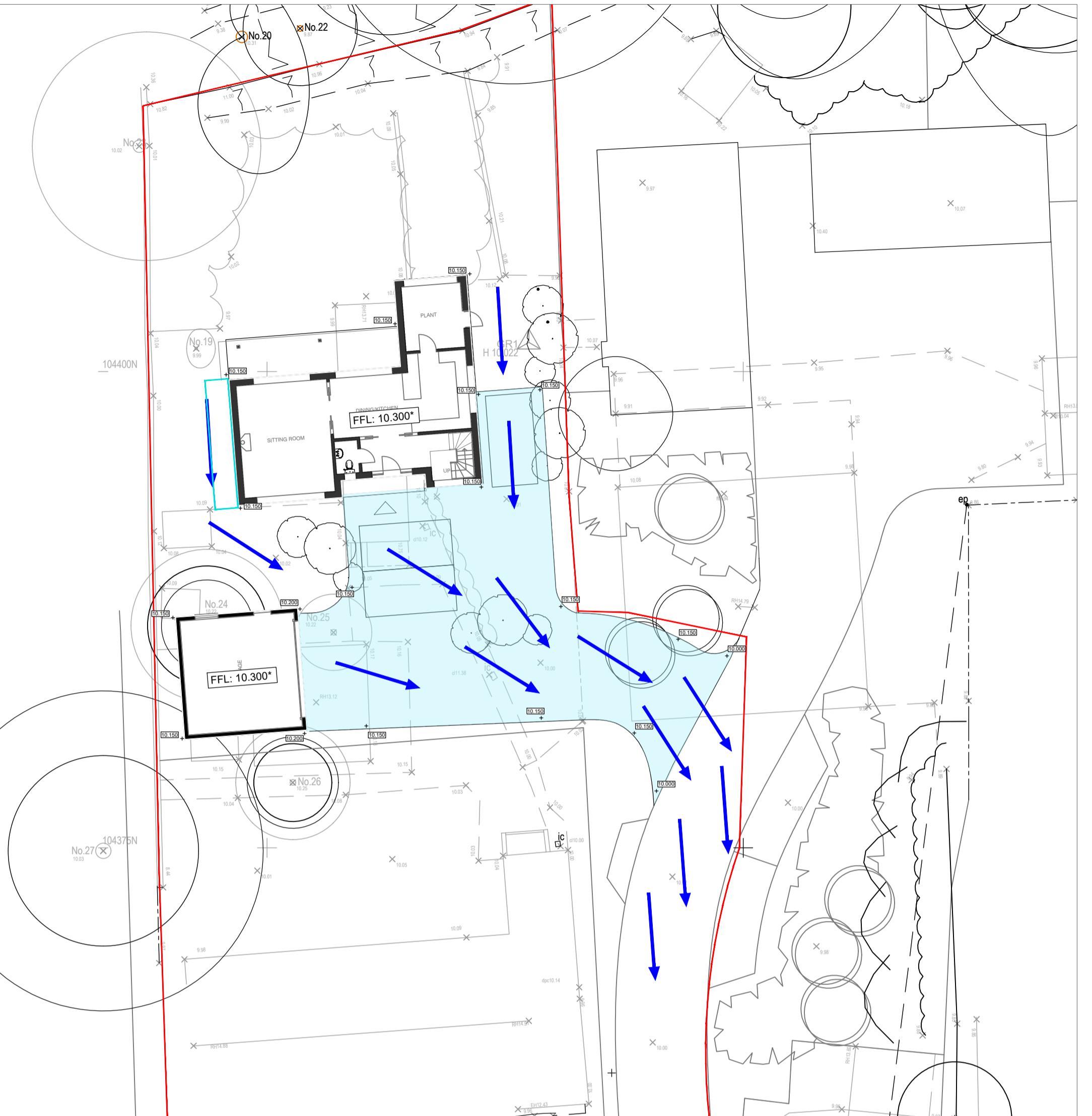
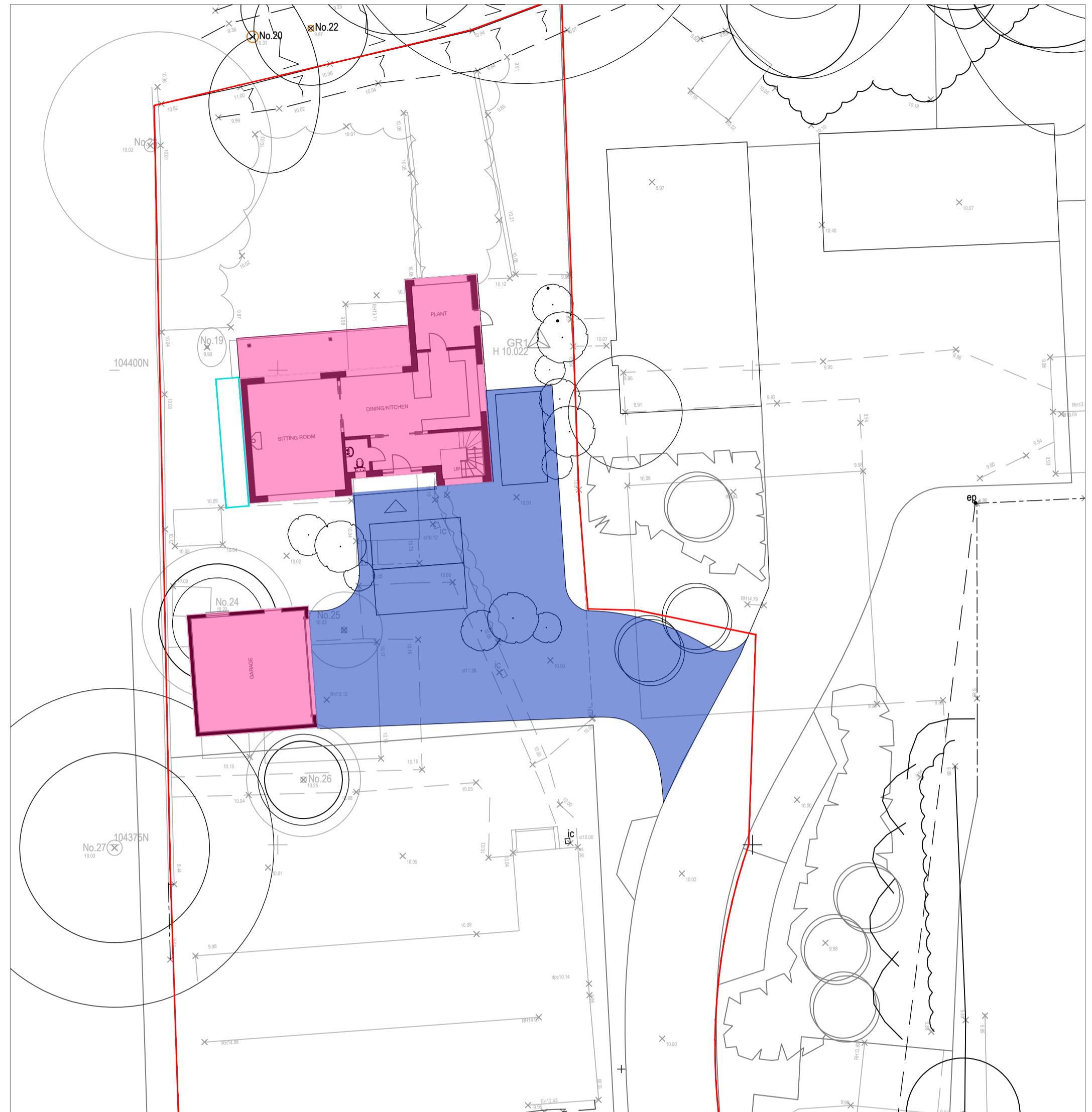
FOR PLANNING ONLY

Prefixed to drawing numbers shall signify the following:-	
PL = PLANNING	Shall <u>not</u> be used for contract or construction purposes
PR = PRELIMINARY	Shall <u>not</u> be used for contract or construction purposes
TT = TENDER	Shall not be used for construction purposes
CC = CONSTRUCTION	These are the <u>only</u> drawings that shall be used for construction purposes
RR = RECORD	Record of actual completed work

STANDARD DRAINAGE NOTES

- 1. DO NOT SCALE FROM THIS DRAWING, REFER TO FIGURED DIMENSIONS ONLY. THE CONTRACTOR SHOULD CHECK ALL DIMENSIONS ON SITE.
- 2. ALL DIMENSIONS IN MILLIMETRES AND ALL LEVELS ARE IN METERS UNLESS NOTED OTHERWISE.
- 3. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ARCHITECT AND ENGINEERING DETAILS, DRAWINGS AND SPECIFICATIONS.
- 4. ANY DISCREPANCIES SHOULD BE REPORTED TO THE ARCHITECT AND/OR ENGINEER IMMEDIATELY, SO THAT CLARIFICATION CAN BE SOUGHT PRIOR TO THE COMMENCEMENT OF WORK.
- 5. BEFORE COMMENCING CONSTRUCTION THE CONTRACTOR MUST CHECK THE INVERT LEVELS OF EXISTING SEWERS TO WHICH CONNECTIONS ARE MADE. IN ADDITION THE CONTRACTOR MUST LOCATE AND DETERMINE INVERT LEVELS OF THE EXISTING SPURS TO WHICH CONNECTIONS ARE PROPOSED. ANY DISCREPANCIES ARE TO BE NOTIFIED TO THE ENGINEER IMMEDIATELY, PRIOR TO CONSTRUCTION.
- 6. ALL DRAINAGE WORKS SHOULD COMMENCE AT THE PROPOSED DOWNSTREAM CONNECTION POINT, THE WORKS CONTINUING UPSTREAM FOLLOWING CONFIRMATION OF THE TIE-IN INVERT LEVELS TO THE ENGINEER. CONNECTIONS TO MANHOLES OR LARGER SIZED PIPES ETC. SHOULD BE SOFFIT TO SOFFIT UNLESS OTHERWISE INSTRUCTED BY THE ENGINEER, IF THIS IS NOT POSSIBLE INFORM THE ENGINEER IMMEDIATELY.
- 7. COVER LEVELS SHOWN ARE APPROXIMATE. COVERS AND FRAMES SHALL BE SET TO FINISHED GROUND LEVELS AND FALLS.
- 8. ALL UN-REFERENCED PIPES ARE TO BE 100mm DIA
- 9. ALL PIPES TO BE ADOPTED, OR CONNECTING TO ADOPTED SEWERS, TO BE VITRIFIED CLAY TO BS EN 295 AND BS65 (SWS ONLY), OR CONCRETE PIPES TO BE EN 1916 AND BS5911:PART 1.
- 10. ROAD GULLY OUTLET PIPES ARE TO BE 150mm DIA. WITH CONCRETE SURROUND AND FLEXIBLE JOINTS. ALL GULLIES SHALL BE FITTED WITH GRADE D400 GRATINGS AND FRAMES TO BS EN124, UNLESS OTHERWISE STATED.
- 11. ALL ADOPTABLE SEWERS SHALL BE CONSTRUCTED TO THE STANDARDS AND SPECIFICATION LAID DOWN IN 'SEWERS FOR ADOPTION' 6th EDITION, WITH A VIEW TO ADOPTION UPON COMPLETION OF WORKS.
- 12. ALL PRIVATE DRAINAGE TO BE IN ACCORDANCE WITH THE BUILDING REGULATIONS APPROVED DOCUMENT PART-H, AND TO THE SATISFACTION OF THE BUILDING CONTROL INSPECTOR.
- 13. THE CONTRACTOR IS TO KEEP A RECORD OF ANY VARIATIONS MADE ON SITE, INCLUDING THE RELOCATION OF SEWERS OR DRAINS, SO THAT AN AS CONSTRUCTED DRAWING CAN BE PREPARED UPON COMPLETION OF THE PROJECT.
- 14. STUB CONNECTIONS TO ADOPTABLE MANHOLES SHALL BE MADE FROM VITRIFIED CLAY AND CONSIST OF TWO ROCKER PIPES LAID AT THE SAME GRADIENT AS THE UP OR DOWNSTREAM PIPE.
- 15. IF ANY SUB SOIL DRAINAGE SYSTEMS ARE UNCOVERED DURING THE WORKS CONTACT THE ENGINEER FOR INSTRUCTIONS. SUB SOIL DRAINS ARE TO BE DIVERTED AROUND NEW WORKS AND CONNECTED INTO THE SURFACE WATER.
- 16. NO PRIVATE AREAS ARE TO DRAIN ONTO ADOPTABLE AREAS AND VICE VERSA.
- 17. ALL EXISTING MANHOLE COVER'S, GULLIES, ETC, ARE TO BE RAISED/LOWERED TO SUIT NEW LEVELS.
- 18. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO CONFIRM THE LOCATION AND DEPTH OF ALL EXISTING SERVICES AND UTILITIES THAT MAY BE PRESENT

9. UPON COMPLETION BUT PRIOR TO HANDOVER, CONTRACTOR TO CARRY OUT FULL CCTV SURVEY OF DRAINAGE SYSTEM WHICH IS TO BE REVIEWED BY ENGINEER TO ENSURE SATISFACTORY INSTALLATION
0. PROPRIETARY PRODUCTS TO BE INSTALLED IN FULL ACCORDANCE WITH MANUFACTURER'S GUIDANCE.
1. MANHOLE AND CHAMBER COVER GRADES:
 - 'A15' IN ALL LANDSCAPED AREAS AND ON FOOTPATHS
 - 'B125' IN ALL DRIVEWAYS
 - 'C250' IN PRIVATE PARKING AREAS
 - 'D400' IN CARRIAGeway/ACCESS ROAD



Prefixed to drawing numbers shall signify the following:-	
PL = PLANNING	Shall <u>not</u> be used for contract or construction purposes
P = PRELIMINARY	Shall <u>not</u> be used for contract or construction purposes
T = TENDER	Shall not be used for construction purposes
C = CONSTRUCTION	These are the <u>only</u> drawings that shall be used for construction purposes

P-	10.06.25	PRELIMINARY ISSUE		MR	CS	CS
REV	DATE	DESCRIPTION		BY	CHK	APP
<p>CGS civils Consulting Civil Engineers</p>						
CLIENT	DEBORAH AND CHRISTOPHER BLOWS					
ARCHITECT	SMITH SIMMONS & PARTNERS					
JOB TITLE	LAND NORTH OF THE GRANGE, WESTERGATE, PO20 3SQ					
DRAWING TITLE	PROPOSED DRAINAGE STRATEGY					
DRAWN	MR	ENGINEER	CS	CHECKED	CS	APPROVED
DATE	JUNE 2025		SCALE @ A1	1:100		
JOB No.	C3388	STATUS	DRAWING No.	REV.		
	PL		101	PL-		

STANDARD DRAINAGE NOTES

1. DO NOT SCALE FROM THIS DRAWING, REFER TO FIGURED DIMENSIONS ONLY. THE CONTRACTOR SHOULD CHECK ALL DIMENSIONS ON SITE.
2. ALL DIMENSIONS IN MILLIMETRES AND ALL LEVELS ARE IN METERS UNLESS NOTED OTHERWISE.
3. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ARCHITECT AND ENGINEERING DETAILS, DRAWINGS AND SPECIFICATIONS.
4. ANY DISCREPANCIES SHOULD BE REPORTED TO THE ARCHITECT AND/OR ENGINEER IMMEDIATELY, SO THAT CLARIFICATION CAN BE SOUGHT PRIOR TO THE COMMENCEMENT OF WORK.
5. BEFORE COMMENCING CONSTRUCTION THE CONTRACTOR MUST CHECK THE INVERT LEVELS OF EXISTING SEWERS TO WHICH CONNECTIONS ARE MADE. IN ADDITION THE CONTRACTOR MUST LOCATE AND DETERMINE INVERT LEVELS OF THE EXISTING SPURS TO WHICH CONNECTIONS ARE PROPOSED. ANY DISCREPANCIES ARE TO BE NOTIFIED TO THE ENGINEER IMMEDIATELY, PRIOR TO CONSTRUCTION.
6. ALL DRAINAGE WORKS SHOULD COMMENCE AT THE PROPOSED DOWNSTREAM CONNECTION POINTS WORKS CONTINUING TOWARDS THE LOWEST CONNECTION POINTS. INVERT LEVELS TO THE ENGINEER'S CONNECTIONS TO MANHOLES OR LARGER SIZE PIPES ETC. SHOULD BE SOFFIT TO SOFFIT UNLESS OTHERWISE INSTRUCTED BY THE ENGINEER, IF THIS IS NOT POSSIBLE INFORM THE ENGINEER IMMEDIATELY.
7. COVER LEVELS SHOWN ARE APPROXIMATE, COVERS AND FRAMES SHALL BE SET TO FINISHED GROUND LEVELS AND FALLS.
8. ALL UN-REFERENCED PIPES ARE TO BE 100mm DIA.
9. ALL PIPES TO BE ADOPTED, OR CONNECTING TO ADOPTED SEWERS, TO BE VITRIFIED CLAY TO BS EN 295 AND BS65 (SWS ONLY), OR CONCRETE PIPES TO BE EN 1916 AND BS5911:PART 1.
10. ROAD GULLY OUTLET PIPES ARE TO BE 150mm DIA. WITH CONCRETE SURROUND AND FLEXIBLE JOINTS. ALL GULLIES SHALL BE TENDED WITH GRATES AND GRATING FRAMES TO BS EN 1254 UNLESS OTHERWISE STATED.
11. ADOPTABLE SEWERS SHALL BE CONSTRUCTED TO THE STANDARDS AND SPECIFICATION LAID DOWN DOWNTOWN IN SEWERS FOR ADOPTION 6TH EDITION, WITH A VIEW TO ADOPTION UPON COMPLETION OF WORKS.
12. ALL PRIVATE DRAINAGE TO BE IN ACCORDANCE WITH THE BUILDING REGULATIONS APPROVED DOCUMENT PART-H, AND TO THE SATISFACTION OF THE BUILDING CONTROL INSPECTOR.
13. THE CONTRACTOR IS TO KEEP A RECORD OF ANY VARIATIONS MADE ON SITE, INCLUDING THE RELOCATION OF SEWERS OR DRAINS, SO THAT AS CONSTRUCTED DRAWING CAN BE PREPARED UPON COMPLETION OF THE PROJECT.
14. STUB CONNECTIONS TO ADOPTABLE MANHOLES SHALL BE MADE FROM VITRIFIED CLAY AND CONSIST OF TWO ROCKER PIPES LAID AT THE SAME GRADIENT AS THE UP OR DOWNSTREAM PIPE.
15. IF ANY SUB SOIL DRAINAGE SYSTEMS ARE UNCOVERED DURING THE WORKS CONTACT THE ENGINEER FOR INSTRUCTIONS. SUB SOIL DRAINS ARE TO BE DIVERTED AROUND NEW WORKS AND CONNECTED INTO THE SURFACE WATER.
16. NO PRIVATE AREAS ARE TO DRAIN ONTO ADOPTABLE AREAS AND VICE VERSA.
17. ALL EXISTING MANHOLE COVERS, GULLIES, ETC, ARE TO BE RAISED/LOWED TO SUIT NEW LEVELS.
18. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO CONFIRM THE LOCATION AND DEPTH OF ALL EXISTING SERVICES AND UTILITIES THAT MAY BE PRESENT.
19. UPON COMPLETION BUT PRIOR TO HANDOVER, CONTRACTOR TO CARRY OUT FULL CCTV SURVEY OF DRAINAGE SYSTEM WHICH IS TO BE REVIEWED BY ENGINEER TO ENSURE SATISFACTORY INSTALLATION.
20. PROPRIETARY PRODUCTS TO BE INSTALLED IN FULL ACCORDANCE WITH MANUFACTURER'S GUIDANCE.
21. MANHOLE AND CHAMBER COVER GRADES:
 - A15' IN ALL LANDSCAPED AREAS AND ON FOOTPATHS
 - B125' IN ALL DRIVEWAYS
 - C250' IN PRIVATE PARKING AREAS
 - D400' IN CARRIAGEWAY/ACCESS ROAD

Prefixed to drawing numbers shall signify the following:-	
PL = PLANNING	Shall not be used for contract or construction purposes
P = PRELIMINARY	Shall not be used for contract or construction purposes
T = TENDER	Shall not be used for construction purposes
C = CONSTRUCTION	These are the only drawings that shall be used for construction purposes
R = RECORD	Record of actual completed work

FOR PLANNING ONLY

cgs
civils
Consulting Civil Engineers

CLIENT: DEBORAH AND CHRISTOPHER BLOWS

ARCHITECT: SMITH SIMMONS & PARTNERS

JOB TITLE: LAND NORTH OF THE GRANGE, WESTERGATE, PO20 3SQ

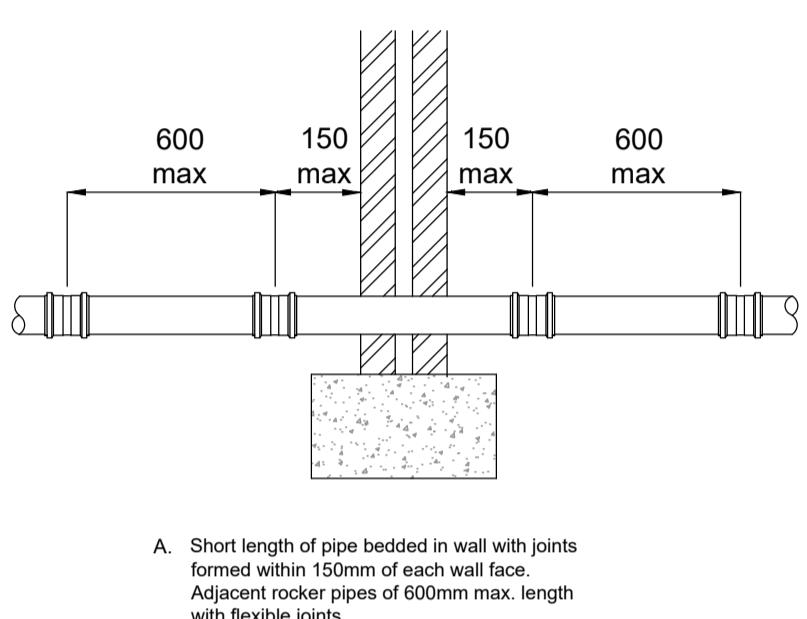
DRAWING TITLE: CONTRIBUTING AREA PLAN & EXCEEDANCE FLOW ROUTES

DRAWN	ENGINEER	CHECKED	APPROVED
MR	CS	CS	CS
DATE	SCALE @ A1		
JUNE 2025	1:200		
JOB No.	STATUS	DRAWING No.	
C3388	PL	201	PL-

STANDARD DRAINAGE NOTES

- DO NOT SCALE FROM THIS DRAWING, REFER TO FIGURED DIMENSIONS ONLY. THE CONTRACTOR SHOULD CHECK ALL DIMENSIONS ON SITE.
- ALL DIMENSIONS IN MILLIMETRES AND ALL LEVELS ARE IN METRES UNLESS NOTED OTHERWISE.
- THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ARCHITECT AND ENGINEERING DETAILS, DRAWINGS AND SPECIFICATIONS.
- ANY DISCREPANCIES SHOULD BE REPORTED TO THE ARCHITECT AND/OR ENGINEER IMMEDIATELY, SO THAT CLARIFICATION CAN BE SOUGHT PRIOR TO THE COMMENCEMENT OF WORK.
- BEFORE COMMENCING CONSTRUCTION THE CONTRACTOR MUST CHECK THE INVERT LEVELS OF EXISTING SEWERS TO WHICH CONNECTIONS ARE MADE. IN ADDITION THE CONTRACTOR MUST LOCATE AND DETERMINE INVERT LEVELS OF THE EXISTING SPURS TO WHICH CONNECTIONS ARE PROPOSED. ANY DISCREPANCIES ARE TO BE NOTIFIED TO THE ENGINEER IMMEDIATELY, PRIOR TO CONSTRUCTION.
- ALL DRAINAGE WORKS SHOULD COMMENCE AT THE PROPOSED DOWNSTREAM CONNECTION POINT. WORKS CONTINUING UPSTREAM SHOULD FOLLOW CONSTRUCTION OF INVERT LEVELS TO THE ENGINEER'S CONNECTIONS TO MANHOLES OR LARGER SIZED PIPES ETC. SHOULD BE SOFFIT TO SOFFIT UNLESS OTHERWISE INSTRUCTED BY THE ENGINEER. IF THIS IS NOT POSSIBLE INFORM THE ENGINEER IMMEDIATELY.
- COVER LEVELS SHOWN ARE APPROXIMATE. COVERS AND FRAMES SHALL BE SET TO FINISHED GROUND LEVELS AND FALLS.
- ALL UN-REFERENCED PIPES ARE TO BE 100mm DIA.
- ALL PIPES TO BE ADOPTED, OR CONNECTING TO ADOPTED SEWERS, TO BE VITRIFIED CLAY TO BS EN 295 AND BS65 (SWS ONLY), OR CONCRETE PIPES TO BE EN 1916 AND BS5911:PART 1.
- ROAD GULLY OUTLET PIPES ARE TO BE 150mm DIA. WITH CONCRETE SURROUND AND FLEXIBLE JOINTS. GULLIES SHALL BE TREATED WITH GRANULAR GRATINGS AND FRAMES TO BS EN 1263 UNLESS OTHERWISE STATED.
- ADOPTABLE SEWERS SHALL BE CONSTRUCTED TO THE STANDARDS AND SPECIFICATION LAID DOWN IN SEWERS FOR ADOPTION 6TH EDITION, WITH A VIEW TO ADOPTION UPON COMPLETION OF WORKS.
- ALL PRIVATE DRAINAGE TO BE IN ACCORDANCE WITH THE BUILDING REGULATIONS APPROVED DOCUMENT PART-H, AND TO THE SATISFACTION OF THE BUILDING CONTROL INSPECTOR.
- THE CONTRACTOR IS TO KEEP A RECORD OF ANY VARIATIONS MADE ON SITE, INCLUDING THE RELOCATION OF SEWERS OR DRAINS, SO THAT AS CONSTRUCTED DRAWING CAN BE PREPARED UPON COMPLETION OF THE PROJECT.
- STUB CONNECTIONS TO ADOPTABLE MANHOLES SHALL BE MADE FROM VITRIFIED CLAY AND CONSIST OF TWO ROCKER PIPES LAID AT THE SAME GRADIENT AS THE UP OR DOWNSTREAM PIPE.
- IF ANY SUB SOIL DRAINAGE SYSTEMS ARE UNCOVERED DURING THE WORKS CONTACT THE ENGINEER FOR INSTRUCTIONS. SUB SOIL DRAINS ARE TO BE DIVERTED AROUND NEW WORKS AND CONNECTED INTO THE SURFACE WATER.
- NO PRIVATE AREAS ARE TO DRAIN ONTO ADOPTABLE AREAS AND VICE VERSA.
- ALL EXISTING MANHOLE COVERS, GULLIES, ETC, ARE TO BE RAISED/LOWED TO SUIT NEW LEVELS.
- IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO CONFIRM THE LOCATION AND DEPTH OF ALL EXISTING SERVICES AND UTILITIES THAT MAY BE PRESENT.
- UPON COMPLETION BUT PRIOR TO HANDOVER, CONTRACTOR TO CARRY OUT FULL CCTV SURVEY OF DRAINAGE SYSTEM WHICH IS TO BE REVIEWED BY ENGINEER TO ENSURE SATISFACTORY INSTALLATION.
- PROPRIETARY PRODUCTS TO BE INSTALLED IN FULL ACCORDANCE WITH MANUFACTURER'S GUIDANCE.
- MANHOLE AND CHAMBER COVER GRADES:
 - A15' IN ALL LANDSCAPED AREAS AND ON FOOTPATHS
 - B125' IN ALL DRIVEWAYS
 - C260' IN PRIVATE PARKING AREAS
 - D400' IN CARRIAGEWAY/ACCESS ROAD

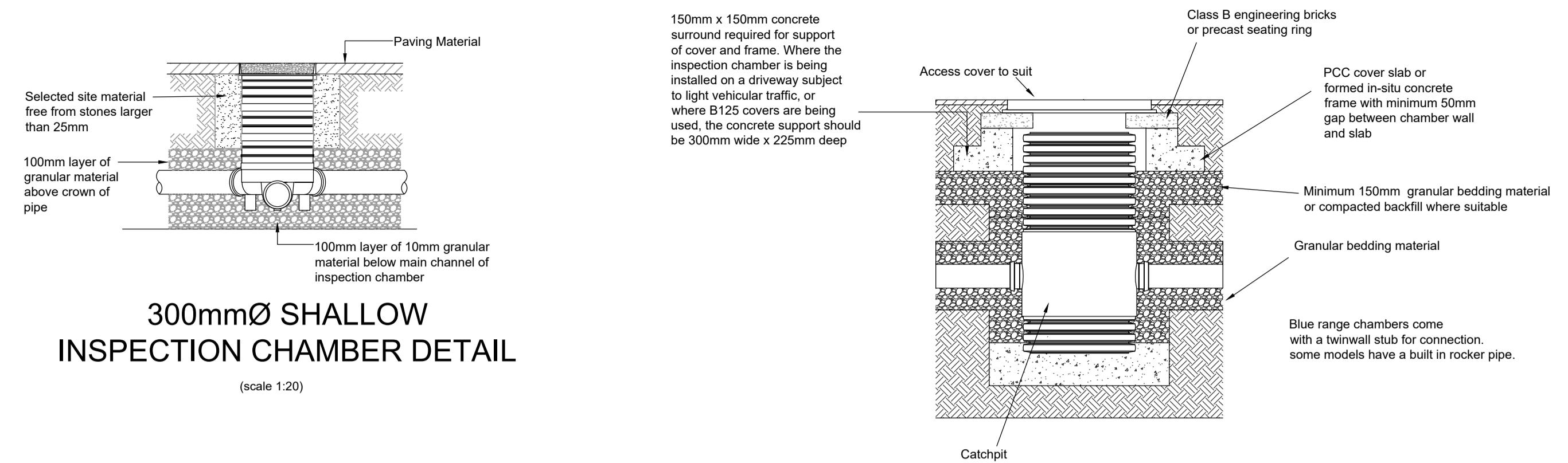
FOR PLANNING ONLY


Prefixed to drawing numbers shall signify the following:-	
PL = PLANNING	Shall not be used for contract or construction purposes
P = PRELIMINARY	Shall not be used for contract or construction purposes
T = TENDER	Shall not be used for construction purposes
C = CONSTRUCTION	These are the only drawings that shall be used for construction purposes
R = RECORD	Record of actual completed work

P- 10.06.25	PRELIMINARY ISSUE	MR	CS	CS
REV DATE	DESCRIPTION	BY	CHK	APP
 CLIENT DEBORAH AND CHRISTOPHER BLOWS				
ARCHITECT SMITH SIMMONS & PARTNERS				
JOB TITLE LAND NORTH OF THE GRANGE, WESTERGATE, PO20 3SQ				
DRAWING TITLE PROPOSED TYPICAL CONSTRUCTION DETAILS				
DRAWN	ENGINEER	CHECKED	APPROVED	
MR	CS	CS	CS	
DATE	SCALE @ A1			
JUNE 2025			AS SHOWN	
JOB No.	STATUS	DRAWING No.		REV.
C3388	PL	301		PL-

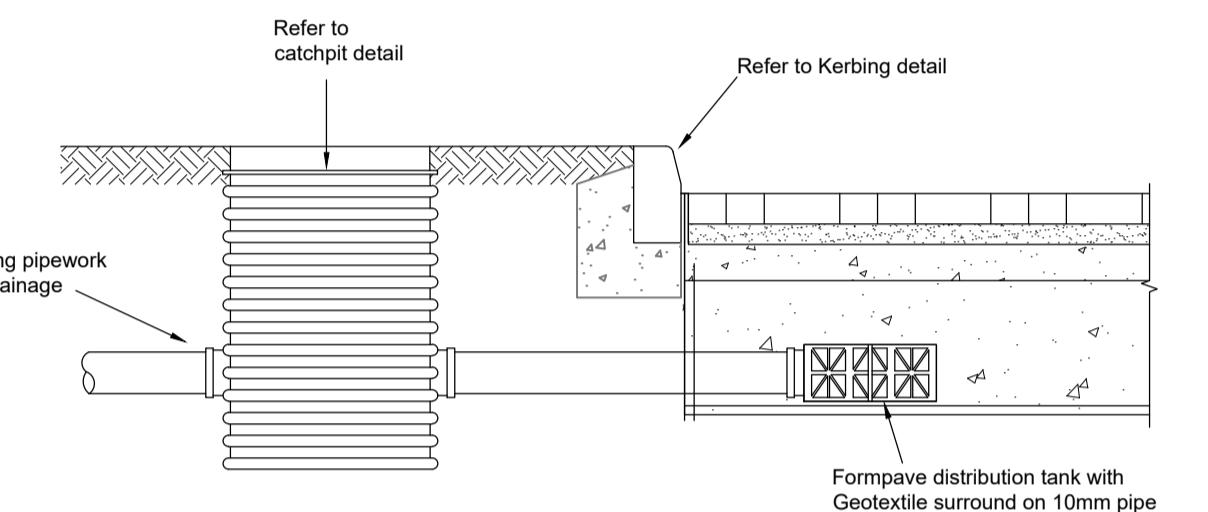
Pipes near buildings
(not to scale)

Pipes near buildings
(not to scale)

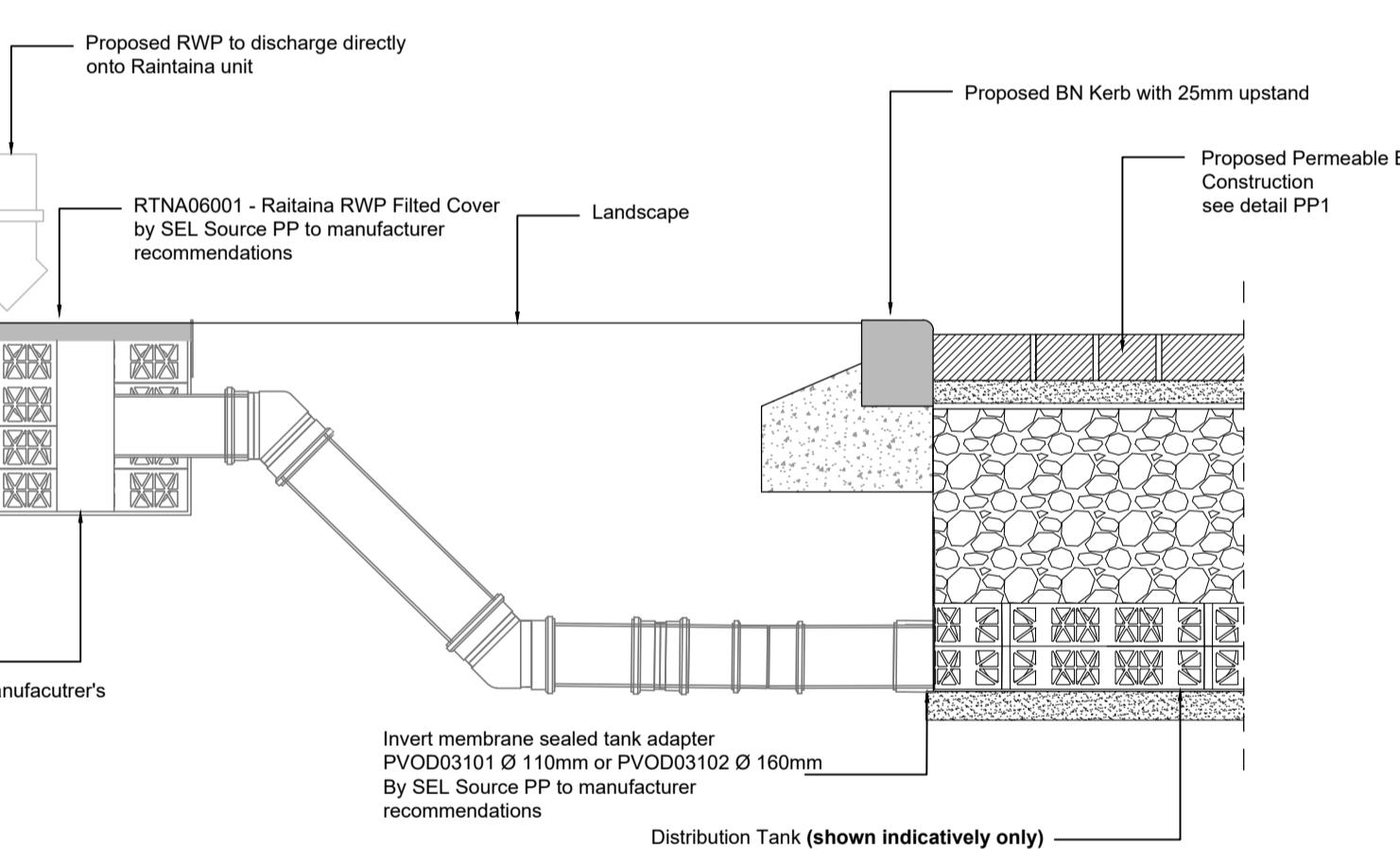


Pipes through wall detail
(not to scale)

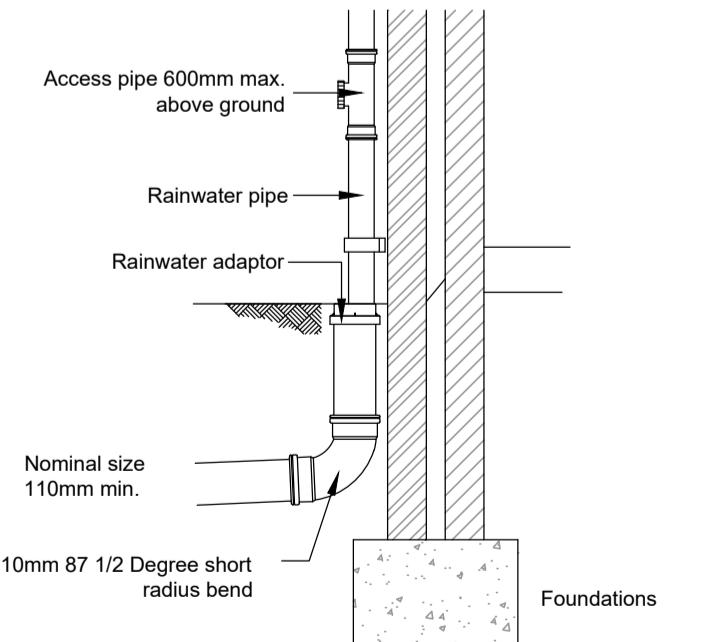
Pipes through wall with lintel detail
(not to scale)


300mmØ SHALLOW INSPECTION CHAMBER DETAIL

(scale 1:20)


Typical Silt Trap Detail

(not to scale)


Formpave Diffuser tank construction

Single Unit: 0.354x0.708x0.150m DP
(scale 1:20)

Proposed Downpipe Filter Chamber with discharge connection to Distribution Tank

(not to scale)

External Rainwater Pipe to Drain

(scale 1:20)

Note: Where the access chamber is in the highway (including any footway) the highway Authority can have specific requirements

(not to scale)

Design Settings

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	2	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	1.000	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	4.00	Include Intermediate Ground	✓
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	✓
Maximum Rainfall (mm/hr)	75.0		

Nodes

	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
Permeable Paving Storage		0.028		10.150	450	104358.441	494012.054	0.560
Bioretention		0.006	4.00	10.150	450	104356.173	494014.172	0.470

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	Bioretention	Permeable Paving Storage	3.103	0.600	9.680	9.590	0.090	34.5	100	4.04	56.6

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.318	10.3	1.2	0.370	0.460	0.006	0.0	23	0.879

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	3.103	34.5	100	Circular	10.150	9.680	0.370	10.150	9.590	0.460

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
1.000	Bioretention	450	Manhole	Adoptable	Permeable Paving Storage	450	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
Permeable Paving Storage	104358.441	494012.054	10.150	0.560	450	1	1.000	9.590	100
Bioretention	104356.173	494014.172	10.150	0.470	450	0	1.000	9.680	100

Simulation Settings

Rainfall Methodology	FEH-22	Analysis Speed	Normal	Starting Level (m)
Rainfall Events	Singular	Skip Steady State	x	Check Discharge Rate(s) x
Summer CV	1.000	Drain Down Time (mins)	240	Check Discharge Volume x
Winter CV	1.000	Additional Storage (m³/ha)	0.0	

Storm Durations

15 | 30 | 60 | 120 | 180 | 240 | 360 | 480 | 600 | 720 | 960 | 1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
10	0	0	0
30	0	0	0
30	40	0	0
100	0	0	0
100	45	0	0

Node Permeable Paving Storage Carpark Storage Structure

Base Inf Coefficient (m/hr)	0.01094	Invert Level (m)	9.590	Slope (1:X)	500.0
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	428	Depth (m)	0.450
Safety Factor	2.0	Width (m)	10.000	Inf Depth (m)	
Porosity	0.30	Length (m)	20.000		

Node Bioretention Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.01094	Invert Level (m)	9.680	Depth (m)	0.500
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)		Inf Depth (m)	
Safety Factor	2.0	Pit Width (m)	1.500	Number Required	1
Porosity	0.30	Pit Length (m)	7.000		

Results for 2 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
240 minute summer	Permeable Paving Storage	184	9.694	0.104	2.2	5.0388	0.0000	OK
15 minute summer	Bioretention	10	9.704	0.024	1.3	0.0783	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)
240 minute summer	Permeable Paving Storage	Infiltration		0.3			
15 minute summer	Bioretention	1.000	Permeable Paving Storage	1.3	0.564	0.122	0.0085
15 minute summer	Bioretention	Infiltration		0.0			

Results for 10 year Critical Storm Duration. Lowest mass balance: 100.00%

Node	Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m ³)	Flood (m ³)	Status
240 minute winter		Permeable Paving Storage	228	9.768	0.178	2.5	9.5232	0.0000	OK
240 minute winter		Bioretention	228	9.768	0.088	0.4	0.2919	0.0000	OK

Link	Event	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m ³)
	(Upstream Depth)							
	240 minute winter	Permeable Paving Storage	Infiltration		0.3			
	240 minute winter	Bioretention	1.000	Permeable Paving Storage	0.7	0.179	0.065	0.0235
	240 minute winter	Bioretention	Infiltration		0.0			

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
240 minute summer	Permeable Paving Storage	240	9.821	0.231	4.4	12.6824	0.0000	OK
240 minute summer	Bioretention	240	9.821	0.141	0.8	0.4657	0.0000	SURCHARGED
<hr/>								
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	
240 minute summer	Permeable Paving Storage	Infiltration		0.3				
240 minute summer	Bioretention	1.000	Permeable Paving Storage	0.7	0.222	0.069	0.0243	
240 minute summer	Bioretention	Infiltration		0.0				

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	Permeable Paving Storage	352	9.928	0.338	2.8	19.1459	0.0000	OK
360 minute winter	Bioretention	352	9.928	0.248	0.5	0.8212	0.0000	FLOOD RISK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)
360 minute winter	Permeable Paving Storage	Infiltration		0.3			
360 minute winter	Bioretention	1.000	Permeable Paving Storage	0.4	0.187	0.037	0.0243
360 minute winter	Bioretention	Infiltration		0.0			

Results for 100 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	Permeable Paving Storage	344	9.883	0.293	2.6	16.4251	0.0000	OK
360 minute winter	Bioretention	344	9.883	0.203	0.5	0.6716	0.0000	FLOOD RISK
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	
360 minute winter	Permeable Paving Storage	Infiltration		0.3				
360 minute winter	Bioretention	1.000	Permeable Paving Storage	0.5	0.154	0.052	0.0243	
360 minute winter	Bioretention	Infiltration		0.0				

Results for 100 year +45% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (l/s)	Node Vol (m³)	Flood (m³)	Status
600 minute summer	Permeable Paving Storage	600	10.039	0.449	3.6	25.8001	0.0000	OK
600 minute summer	Bioretention	600	10.039	0.359	0.7	1.1872	0.0000	FLOOD RISK
Link Event								
(Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	
600 minute summer	Permeable Paving Storage	Infiltration		0.3				
600 minute summer	Bioretention	1.000	Permeable Paving Storage	0.5	0.168	0.049	0.0243	
600 minute summer	Bioretention	Infiltration		0.0				

7.5 **Appendix E – Maintenance Schedule**

Maintenance Schedule

Land north of the Grange, Westergate

For

Deborah and Christopher Blows

Rev – **PL-**

Reference **C3388**

Date **10th June 2025**

Revision	Date of Issue	Comments	Prepared By	Checked By
PL-	10/06/2024	Initial Issue	MR	CS

1 Maintenance

1.1 Introduction

1.1.1 During construction, the Contractor will be responsible for maintaining the drainage and SuDS (Sustainable Drainage Systems). Upon handover, the occupier will take on the responsibility of these duties as laid out in this report.

1.1.2 The maintenance schedule for the proposed development will be split down into two separate categories; SuDS features and regular private drainage.

1.2 SuDS at Land north of the Grange, Westergate

1.2.1 As listed above, in section 5.1.2, the SuDS features used on site will be **Permeable Paving and Bioretention Planter**

1.2.2 The SuDS features have been designed for easy maintenance and comprise:

- Regular Day-to-Day care – litter collection, regular gardening to control vegetation growth and checking inlets where water enters the SuDS features
- Occasional tasks – checking the SuDS features and removing any silt that builds up in the SuDS feature
- Remedial work – repairing damage where necessary

1.3 SuDS Drainage Maintenance Specification

1.3.1 Permeable Paving

In order to maintain the functioning of the permeable paving, the following maintenance requirements should be adhered to:

Table 21.3 Operation and maintenance requirements for permeable paving

Maintenance Schedule	Required Action	Typical Frequency
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
Occasional maintenance	Stabilise and mow contributing and adjacent areas Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than spraying	As required As required – once per year on less frequently used pavements
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of level of the paving Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material Rehabilitation of surface and upper substructure by remedial sweeping	As required As required Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
Monitoring	Initial inspection Inspect for evidence of poor operation and/or weed growth – if required take remedial action Inspect silt accumulation rate and establish appropriate brushing frequencies Monitor inspection chambers	Monthly for three months after installation Three-monthly, 48h after large storms in first six months Annually Annually

1.3.1 Bio retention systems

In order to maintain the functioning of the bio retention systems, the following maintenance requirements should be adhered to:

Table 18.3 Operation and maintenance requirements for bio retention systems

Maintenance Schedule	Required Action	Typical Frequency
Regular Inspections	Inspection infiltration surfaces for silting and ponding, record de-watering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary	Quarterly
	Check operation of underdrains by inspection of flows after rain	Annually
	Assess plants for disease infection, poor growth, invasive species etc and replace as necessary	Quarterly
	Inspect inlets and outlets for blockages	Quarterly
Regular maintenance	Remove litter and surface debris and weeds	Quarterly (or more frequently for tidiness or aesthetic reasons)
	Replace any plants, to maintain planting density	As required
	Remove sediment, litter and debris build-up from around inlets or from forebays	Quarterly to biannually
Occasional maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required	As required
	Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required
Remedial actions	Remove and replace filter medium and vegetation above	As required but likely to be > 20 years

1.4 General Drainage Maintenance Specification

1.4.1 Inlet Structures and Inspection Chambers

- Inlet structures such as rainwater downpipes, road gullies and channel drains should be free from obstruction at all times to allow free flow through the SuDS
- Inspection Chambers and Rodding Eyes are used on bends or where pipes come together. They allow access and cleaning to the system if necessary.

Inlet Structures and Inspection Chambers	
Regular Maintenance	Frequency
Inlet Structures Inspect rainwater downpipes, channel drains and road gullies, removing obstructions and silt as necessary. Check that there is no physical damage. Trim vegetation 1m min surround to structures and keep area free from silt and debris	Monthly
Inspections Chambers and below ground control chambers. Remove cover and inspect, ensuring that the water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually
Undertake inspection after leaf fall in Autumn	
Occasional Maintenance Check topsoil levels are 20mm above edges of chambers to avoid mower damage.	As necessary
Remedial Work Repair physical damage if necessary	As required

1.4.2 Below ground drainage pipes

- Below ground drainage pipes convey water to the SuDS system. They should always be free from obstruction to allow free flow.

Below Ground Drainage Pipes	
Regular Maintenance	Frequency
Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months then annually
Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
Remove sediment from pre-treatment inlet structures and inspection chambers.	Annually or as required
Maintain vegetation to designed limits within the vicinity of below ground drainage pipes and tanks.	Monthly or as required
Remedial Work	
Repair physical damage if necessary	As required
Monitoring	
Inspect all inlets, outlets and vents to ensure that they are in good conditions and operating as designed.	Annually
Survey inside of pipe runs for sediment build up and remove if necessary.	Every 5 years or as required